Newer
Older
2024-Tsubasa / system / node_modules / three / examples / jsm / shaders / SMAAShader.js
import {
	Vector2
} from 'three';

/**
 * WebGL port of Subpixel Morphological Antialiasing (SMAA) v2.8
 * Preset: SMAA 1x Medium (with color edge detection)
 * https://github.com/iryoku/smaa/releases/tag/v2.8
 */

const SMAAEdgesShader = {

	name: 'SMAAEdgesShader',

	defines: {

		'SMAA_THRESHOLD': '0.1'

	},

	uniforms: {

		'tDiffuse': { value: null },
		'resolution': { value: new Vector2( 1 / 1024, 1 / 512 ) }

	},

	vertexShader: /* glsl */`

		uniform vec2 resolution;

		varying vec2 vUv;
		varying vec4 vOffset[ 3 ];

		void SMAAEdgeDetectionVS( vec2 texcoord ) {
			vOffset[ 0 ] = texcoord.xyxy + resolution.xyxy * vec4( -1.0, 0.0, 0.0,  1.0 ); // WebGL port note: Changed sign in W component
			vOffset[ 1 ] = texcoord.xyxy + resolution.xyxy * vec4(  1.0, 0.0, 0.0, -1.0 ); // WebGL port note: Changed sign in W component
			vOffset[ 2 ] = texcoord.xyxy + resolution.xyxy * vec4( -2.0, 0.0, 0.0,  2.0 ); // WebGL port note: Changed sign in W component
		}

		void main() {

			vUv = uv;

			SMAAEdgeDetectionVS( vUv );

			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );

		}`,

	fragmentShader: /* glsl */`

		uniform sampler2D tDiffuse;

		varying vec2 vUv;
		varying vec4 vOffset[ 3 ];

		vec4 SMAAColorEdgeDetectionPS( vec2 texcoord, vec4 offset[3], sampler2D colorTex ) {
			vec2 threshold = vec2( SMAA_THRESHOLD, SMAA_THRESHOLD );

			// Calculate color deltas:
			vec4 delta;
			vec3 C = texture2D( colorTex, texcoord ).rgb;

			vec3 Cleft = texture2D( colorTex, offset[0].xy ).rgb;
			vec3 t = abs( C - Cleft );
			delta.x = max( max( t.r, t.g ), t.b );

			vec3 Ctop = texture2D( colorTex, offset[0].zw ).rgb;
			t = abs( C - Ctop );
			delta.y = max( max( t.r, t.g ), t.b );

			// We do the usual threshold:
			vec2 edges = step( threshold, delta.xy );

			// Then discard if there is no edge:
			if ( dot( edges, vec2( 1.0, 1.0 ) ) == 0.0 )
				discard;

			// Calculate right and bottom deltas:
			vec3 Cright = texture2D( colorTex, offset[1].xy ).rgb;
			t = abs( C - Cright );
			delta.z = max( max( t.r, t.g ), t.b );

			vec3 Cbottom  = texture2D( colorTex, offset[1].zw ).rgb;
			t = abs( C - Cbottom );
			delta.w = max( max( t.r, t.g ), t.b );

			// Calculate the maximum delta in the direct neighborhood:
			float maxDelta = max( max( max( delta.x, delta.y ), delta.z ), delta.w );

			// Calculate left-left and top-top deltas:
			vec3 Cleftleft  = texture2D( colorTex, offset[2].xy ).rgb;
			t = abs( C - Cleftleft );
			delta.z = max( max( t.r, t.g ), t.b );

			vec3 Ctoptop = texture2D( colorTex, offset[2].zw ).rgb;
			t = abs( C - Ctoptop );
			delta.w = max( max( t.r, t.g ), t.b );

			// Calculate the final maximum delta:
			maxDelta = max( max( maxDelta, delta.z ), delta.w );

			// Local contrast adaptation in action:
			edges.xy *= step( 0.5 * maxDelta, delta.xy );

			return vec4( edges, 0.0, 0.0 );
		}

		void main() {

			gl_FragColor = SMAAColorEdgeDetectionPS( vUv, vOffset, tDiffuse );

		}`

};

const SMAAWeightsShader = {

	name: 'SMAAWeightsShader',

	defines: {

		'SMAA_MAX_SEARCH_STEPS': '8',
		'SMAA_AREATEX_MAX_DISTANCE': '16',
		'SMAA_AREATEX_PIXEL_SIZE': '( 1.0 / vec2( 160.0, 560.0 ) )',
		'SMAA_AREATEX_SUBTEX_SIZE': '( 1.0 / 7.0 )'

	},

	uniforms: {

		'tDiffuse': { value: null },
		'tArea': { value: null },
		'tSearch': { value: null },
		'resolution': { value: new Vector2( 1 / 1024, 1 / 512 ) }

	},

	vertexShader: /* glsl */`

		uniform vec2 resolution;

		varying vec2 vUv;
		varying vec4 vOffset[ 3 ];
		varying vec2 vPixcoord;

		void SMAABlendingWeightCalculationVS( vec2 texcoord ) {
			vPixcoord = texcoord / resolution;

			// We will use these offsets for the searches later on (see @PSEUDO_GATHER4):
			vOffset[ 0 ] = texcoord.xyxy + resolution.xyxy * vec4( -0.25, 0.125, 1.25, 0.125 ); // WebGL port note: Changed sign in Y and W components
			vOffset[ 1 ] = texcoord.xyxy + resolution.xyxy * vec4( -0.125, 0.25, -0.125, -1.25 ); // WebGL port note: Changed sign in Y and W components

			// And these for the searches, they indicate the ends of the loops:
			vOffset[ 2 ] = vec4( vOffset[ 0 ].xz, vOffset[ 1 ].yw ) + vec4( -2.0, 2.0, -2.0, 2.0 ) * resolution.xxyy * float( SMAA_MAX_SEARCH_STEPS );

		}

		void main() {

			vUv = uv;

			SMAABlendingWeightCalculationVS( vUv );

			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );

		}`,

	fragmentShader: /* glsl */`

		#define SMAASampleLevelZeroOffset( tex, coord, offset ) texture2D( tex, coord + float( offset ) * resolution, 0.0 )

		uniform sampler2D tDiffuse;
		uniform sampler2D tArea;
		uniform sampler2D tSearch;
		uniform vec2 resolution;

		varying vec2 vUv;
		varying vec4 vOffset[3];
		varying vec2 vPixcoord;

		#if __VERSION__ == 100
		vec2 round( vec2 x ) {
			return sign( x ) * floor( abs( x ) + 0.5 );
		}
		#endif

		float SMAASearchLength( sampler2D searchTex, vec2 e, float bias, float scale ) {
			// Not required if searchTex accesses are set to point:
			// float2 SEARCH_TEX_PIXEL_SIZE = 1.0 / float2(66.0, 33.0);
			// e = float2(bias, 0.0) + 0.5 * SEARCH_TEX_PIXEL_SIZE +
			//     e * float2(scale, 1.0) * float2(64.0, 32.0) * SEARCH_TEX_PIXEL_SIZE;
			e.r = bias + e.r * scale;
			return 255.0 * texture2D( searchTex, e, 0.0 ).r;
		}

		float SMAASearchXLeft( sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end ) {
			/**
				* @PSEUDO_GATHER4
				* This texcoord has been offset by (-0.25, -0.125) in the vertex shader to
				* sample between edge, thus fetching four edges in a row.
				* Sampling with different offsets in each direction allows to disambiguate
				* which edges are active from the four fetched ones.
				*/
			vec2 e = vec2( 0.0, 1.0 );

			for ( int i = 0; i < SMAA_MAX_SEARCH_STEPS; i ++ ) { // WebGL port note: Changed while to for
				e = texture2D( edgesTex, texcoord, 0.0 ).rg;
				texcoord -= vec2( 2.0, 0.0 ) * resolution;
				if ( ! ( texcoord.x > end && e.g > 0.8281 && e.r == 0.0 ) ) break;
			}

			// We correct the previous (-0.25, -0.125) offset we applied:
			texcoord.x += 0.25 * resolution.x;

			// The searches are bias by 1, so adjust the coords accordingly:
			texcoord.x += resolution.x;

			// Disambiguate the length added by the last step:
			texcoord.x += 2.0 * resolution.x; // Undo last step
			texcoord.x -= resolution.x * SMAASearchLength(searchTex, e, 0.0, 0.5);

			return texcoord.x;
		}

		float SMAASearchXRight( sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end ) {
			vec2 e = vec2( 0.0, 1.0 );

			for ( int i = 0; i < SMAA_MAX_SEARCH_STEPS; i ++ ) { // WebGL port note: Changed while to for
				e = texture2D( edgesTex, texcoord, 0.0 ).rg;
				texcoord += vec2( 2.0, 0.0 ) * resolution;
				if ( ! ( texcoord.x < end && e.g > 0.8281 && e.r == 0.0 ) ) break;
			}

			texcoord.x -= 0.25 * resolution.x;
			texcoord.x -= resolution.x;
			texcoord.x -= 2.0 * resolution.x;
			texcoord.x += resolution.x * SMAASearchLength( searchTex, e, 0.5, 0.5 );

			return texcoord.x;
		}

		float SMAASearchYUp( sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end ) {
			vec2 e = vec2( 1.0, 0.0 );

			for ( int i = 0; i < SMAA_MAX_SEARCH_STEPS; i ++ ) { // WebGL port note: Changed while to for
				e = texture2D( edgesTex, texcoord, 0.0 ).rg;
				texcoord += vec2( 0.0, 2.0 ) * resolution; // WebGL port note: Changed sign
				if ( ! ( texcoord.y > end && e.r > 0.8281 && e.g == 0.0 ) ) break;
			}

			texcoord.y -= 0.25 * resolution.y; // WebGL port note: Changed sign
			texcoord.y -= resolution.y; // WebGL port note: Changed sign
			texcoord.y -= 2.0 * resolution.y; // WebGL port note: Changed sign
			texcoord.y += resolution.y * SMAASearchLength( searchTex, e.gr, 0.0, 0.5 ); // WebGL port note: Changed sign

			return texcoord.y;
		}

		float SMAASearchYDown( sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end ) {
			vec2 e = vec2( 1.0, 0.0 );

			for ( int i = 0; i < SMAA_MAX_SEARCH_STEPS; i ++ ) { // WebGL port note: Changed while to for
				e = texture2D( edgesTex, texcoord, 0.0 ).rg;
				texcoord -= vec2( 0.0, 2.0 ) * resolution; // WebGL port note: Changed sign
				if ( ! ( texcoord.y < end && e.r > 0.8281 && e.g == 0.0 ) ) break;
			}

			texcoord.y += 0.25 * resolution.y; // WebGL port note: Changed sign
			texcoord.y += resolution.y; // WebGL port note: Changed sign
			texcoord.y += 2.0 * resolution.y; // WebGL port note: Changed sign
			texcoord.y -= resolution.y * SMAASearchLength( searchTex, e.gr, 0.5, 0.5 ); // WebGL port note: Changed sign

			return texcoord.y;
		}

		vec2 SMAAArea( sampler2D areaTex, vec2 dist, float e1, float e2, float offset ) {
			// Rounding prevents precision errors of bilinear filtering:
			vec2 texcoord = float( SMAA_AREATEX_MAX_DISTANCE ) * round( 4.0 * vec2( e1, e2 ) ) + dist;

			// We do a scale and bias for mapping to texel space:
			texcoord = SMAA_AREATEX_PIXEL_SIZE * texcoord + ( 0.5 * SMAA_AREATEX_PIXEL_SIZE );

			// Move to proper place, according to the subpixel offset:
			texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset;

			return texture2D( areaTex, texcoord, 0.0 ).rg;
		}

		vec4 SMAABlendingWeightCalculationPS( vec2 texcoord, vec2 pixcoord, vec4 offset[ 3 ], sampler2D edgesTex, sampler2D areaTex, sampler2D searchTex, ivec4 subsampleIndices ) {
			vec4 weights = vec4( 0.0, 0.0, 0.0, 0.0 );

			vec2 e = texture2D( edgesTex, texcoord ).rg;

			if ( e.g > 0.0 ) { // Edge at north
				vec2 d;

				// Find the distance to the left:
				vec2 coords;
				coords.x = SMAASearchXLeft( edgesTex, searchTex, offset[ 0 ].xy, offset[ 2 ].x );
				coords.y = offset[ 1 ].y; // offset[1].y = texcoord.y - 0.25 * resolution.y (@CROSSING_OFFSET)
				d.x = coords.x;

				// Now fetch the left crossing edges, two at a time using bilinear
				// filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to
				// discern what value each edge has:
				float e1 = texture2D( edgesTex, coords, 0.0 ).r;

				// Find the distance to the right:
				coords.x = SMAASearchXRight( edgesTex, searchTex, offset[ 0 ].zw, offset[ 2 ].y );
				d.y = coords.x;

				// We want the distances to be in pixel units (doing this here allow to
				// better interleave arithmetic and memory accesses):
				d = d / resolution.x - pixcoord.x;

				// SMAAArea below needs a sqrt, as the areas texture is compressed
				// quadratically:
				vec2 sqrt_d = sqrt( abs( d ) );

				// Fetch the right crossing edges:
				coords.y -= 1.0 * resolution.y; // WebGL port note: Added
				float e2 = SMAASampleLevelZeroOffset( edgesTex, coords, ivec2( 1, 0 ) ).r;

				// Ok, we know how this pattern looks like, now it is time for getting
				// the actual area:
				weights.rg = SMAAArea( areaTex, sqrt_d, e1, e2, float( subsampleIndices.y ) );
			}

			if ( e.r > 0.0 ) { // Edge at west
				vec2 d;

				// Find the distance to the top:
				vec2 coords;

				coords.y = SMAASearchYUp( edgesTex, searchTex, offset[ 1 ].xy, offset[ 2 ].z );
				coords.x = offset[ 0 ].x; // offset[1].x = texcoord.x - 0.25 * resolution.x;
				d.x = coords.y;

				// Fetch the top crossing edges:
				float e1 = texture2D( edgesTex, coords, 0.0 ).g;

				// Find the distance to the bottom:
				coords.y = SMAASearchYDown( edgesTex, searchTex, offset[ 1 ].zw, offset[ 2 ].w );
				d.y = coords.y;

				// We want the distances to be in pixel units:
				d = d / resolution.y - pixcoord.y;

				// SMAAArea below needs a sqrt, as the areas texture is compressed
				// quadratically:
				vec2 sqrt_d = sqrt( abs( d ) );

				// Fetch the bottom crossing edges:
				coords.y -= 1.0 * resolution.y; // WebGL port note: Added
				float e2 = SMAASampleLevelZeroOffset( edgesTex, coords, ivec2( 0, 1 ) ).g;

				// Get the area for this direction:
				weights.ba = SMAAArea( areaTex, sqrt_d, e1, e2, float( subsampleIndices.x ) );
			}

			return weights;
		}

		void main() {

			gl_FragColor = SMAABlendingWeightCalculationPS( vUv, vPixcoord, vOffset, tDiffuse, tArea, tSearch, ivec4( 0.0 ) );

		}`

};

const SMAABlendShader = {

	name: 'SMAABlendShader',

	uniforms: {

		'tDiffuse': { value: null },
		'tColor': { value: null },
		'resolution': { value: new Vector2( 1 / 1024, 1 / 512 ) }

	},

	vertexShader: /* glsl */`

		uniform vec2 resolution;

		varying vec2 vUv;
		varying vec4 vOffset[ 2 ];

		void SMAANeighborhoodBlendingVS( vec2 texcoord ) {
			vOffset[ 0 ] = texcoord.xyxy + resolution.xyxy * vec4( -1.0, 0.0, 0.0, 1.0 ); // WebGL port note: Changed sign in W component
			vOffset[ 1 ] = texcoord.xyxy + resolution.xyxy * vec4( 1.0, 0.0, 0.0, -1.0 ); // WebGL port note: Changed sign in W component
		}

		void main() {

			vUv = uv;

			SMAANeighborhoodBlendingVS( vUv );

			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );

		}`,

	fragmentShader: /* glsl */`

		uniform sampler2D tDiffuse;
		uniform sampler2D tColor;
		uniform vec2 resolution;

		varying vec2 vUv;
		varying vec4 vOffset[ 2 ];

		vec4 SMAANeighborhoodBlendingPS( vec2 texcoord, vec4 offset[ 2 ], sampler2D colorTex, sampler2D blendTex ) {
			// Fetch the blending weights for current pixel:
			vec4 a;
			a.xz = texture2D( blendTex, texcoord ).xz;
			a.y = texture2D( blendTex, offset[ 1 ].zw ).g;
			a.w = texture2D( blendTex, offset[ 1 ].xy ).a;

			// Is there any blending weight with a value greater than 0.0?
			if ( dot(a, vec4( 1.0, 1.0, 1.0, 1.0 )) < 1e-5 ) {
				return texture2D( colorTex, texcoord, 0.0 );
			} else {
				// Up to 4 lines can be crossing a pixel (one through each edge). We
				// favor blending by choosing the line with the maximum weight for each
				// direction:
				vec2 offset;
				offset.x = a.a > a.b ? a.a : -a.b; // left vs. right
				offset.y = a.g > a.r ? -a.g : a.r; // top vs. bottom // WebGL port note: Changed signs

				// Then we go in the direction that has the maximum weight:
				if ( abs( offset.x ) > abs( offset.y )) { // horizontal vs. vertical
					offset.y = 0.0;
				} else {
					offset.x = 0.0;
				}

				// Fetch the opposite color and lerp by hand:
				vec4 C = texture2D( colorTex, texcoord, 0.0 );
				texcoord += sign( offset ) * resolution;
				vec4 Cop = texture2D( colorTex, texcoord, 0.0 );
				float s = abs( offset.x ) > abs( offset.y ) ? abs( offset.x ) : abs( offset.y );

				// WebGL port note: Added gamma correction
				C.xyz = pow(C.xyz, vec3(2.2));
				Cop.xyz = pow(Cop.xyz, vec3(2.2));
				vec4 mixed = mix(C, Cop, s);
				mixed.xyz = pow(mixed.xyz, vec3(1.0 / 2.2));

				return mixed;
			}
		}

		void main() {

			gl_FragColor = SMAANeighborhoodBlendingPS( vUv, vOffset, tColor, tDiffuse );

		}`

};

export { SMAAEdgesShader, SMAAWeightsShader, SMAABlendShader };