Newer
Older
2024-Tsubasa / system / node_modules / three / examples / jsm / shaders / HalftoneShader.js
/**
 * RGB Halftone shader for three.js.
 *	NOTE:
 * 		Shape (1 = Dot, 2 = Ellipse, 3 = Line, 4 = Square)
 *		Blending Mode (1 = Linear, 2 = Multiply, 3 = Add, 4 = Lighter, 5 = Darker)
 */

const HalftoneShader = {

	name: 'HalftoneShader',

	uniforms: {
		'tDiffuse': { value: null },
		'shape': { value: 1 },
		'radius': { value: 4 },
		'rotateR': { value: Math.PI / 12 * 1 },
		'rotateG': { value: Math.PI / 12 * 2 },
		'rotateB': { value: Math.PI / 12 * 3 },
		'scatter': { value: 0 },
		'width': { value: 1 },
		'height': { value: 1 },
		'blending': { value: 1 },
		'blendingMode': { value: 1 },
		'greyscale': { value: false },
		'disable': { value: false }
	},

	vertexShader: /* glsl */`

		varying vec2 vUV;

		void main() {

			vUV = uv;
			gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);

		}`,

	fragmentShader: /* glsl */`

		#define SQRT2_MINUS_ONE 0.41421356
		#define SQRT2_HALF_MINUS_ONE 0.20710678
		#define PI2 6.28318531
		#define SHAPE_DOT 1
		#define SHAPE_ELLIPSE 2
		#define SHAPE_LINE 3
		#define SHAPE_SQUARE 4
		#define BLENDING_LINEAR 1
		#define BLENDING_MULTIPLY 2
		#define BLENDING_ADD 3
		#define BLENDING_LIGHTER 4
		#define BLENDING_DARKER 5
		uniform sampler2D tDiffuse;
		uniform float radius;
		uniform float rotateR;
		uniform float rotateG;
		uniform float rotateB;
		uniform float scatter;
		uniform float width;
		uniform float height;
		uniform int shape;
		uniform bool disable;
		uniform float blending;
		uniform int blendingMode;
		varying vec2 vUV;
		uniform bool greyscale;
		const int samples = 8;

		float blend( float a, float b, float t ) {

		// linear blend
			return a * ( 1.0 - t ) + b * t;

		}

		float hypot( float x, float y ) {

		// vector magnitude
			return sqrt( x * x + y * y );

		}

		float rand( vec2 seed ){

		// get pseudo-random number
			return fract( sin( dot( seed.xy, vec2( 12.9898, 78.233 ) ) ) * 43758.5453 );

		}

		float distanceToDotRadius( float channel, vec2 coord, vec2 normal, vec2 p, float angle, float rad_max ) {

		// apply shape-specific transforms
			float dist = hypot( coord.x - p.x, coord.y - p.y );
			float rad = channel;

			if ( shape == SHAPE_DOT ) {

				rad = pow( abs( rad ), 1.125 ) * rad_max;

			} else if ( shape == SHAPE_ELLIPSE ) {

				rad = pow( abs( rad ), 1.125 ) * rad_max;

				if ( dist != 0.0 ) {
					float dot_p = abs( ( p.x - coord.x ) / dist * normal.x + ( p.y - coord.y ) / dist * normal.y );
					dist = ( dist * ( 1.0 - SQRT2_HALF_MINUS_ONE ) ) + dot_p * dist * SQRT2_MINUS_ONE;
				}

			} else if ( shape == SHAPE_LINE ) {

				rad = pow( abs( rad ), 1.5) * rad_max;
				float dot_p = ( p.x - coord.x ) * normal.x + ( p.y - coord.y ) * normal.y;
				dist = hypot( normal.x * dot_p, normal.y * dot_p );

			} else if ( shape == SHAPE_SQUARE ) {

				float theta = atan( p.y - coord.y, p.x - coord.x ) - angle;
				float sin_t = abs( sin( theta ) );
				float cos_t = abs( cos( theta ) );
				rad = pow( abs( rad ), 1.4 );
				rad = rad_max * ( rad + ( ( sin_t > cos_t ) ? rad - sin_t * rad : rad - cos_t * rad ) );

			}

			return rad - dist;

		}

		struct Cell {

		// grid sample positions
			vec2 normal;
			vec2 p1;
			vec2 p2;
			vec2 p3;
			vec2 p4;
			float samp2;
			float samp1;
			float samp3;
			float samp4;

		};

		vec4 getSample( vec2 point ) {

		// multi-sampled point
			vec4 tex = texture2D( tDiffuse, vec2( point.x / width, point.y / height ) );
			float base = rand( vec2( floor( point.x ), floor( point.y ) ) ) * PI2;
			float step = PI2 / float( samples );
			float dist = radius * 0.66;

			for ( int i = 0; i < samples; ++i ) {

				float r = base + step * float( i );
				vec2 coord = point + vec2( cos( r ) * dist, sin( r ) * dist );
				tex += texture2D( tDiffuse, vec2( coord.x / width, coord.y / height ) );

			}

			tex /= float( samples ) + 1.0;
			return tex;

		}

		float getDotColour( Cell c, vec2 p, int channel, float angle, float aa ) {

		// get colour for given point
			float dist_c_1, dist_c_2, dist_c_3, dist_c_4, res;

			if ( channel == 0 ) {

				c.samp1 = getSample( c.p1 ).r;
				c.samp2 = getSample( c.p2 ).r;
				c.samp3 = getSample( c.p3 ).r;
				c.samp4 = getSample( c.p4 ).r;

			} else if (channel == 1) {

				c.samp1 = getSample( c.p1 ).g;
				c.samp2 = getSample( c.p2 ).g;
				c.samp3 = getSample( c.p3 ).g;
				c.samp4 = getSample( c.p4 ).g;

			} else {

				c.samp1 = getSample( c.p1 ).b;
				c.samp3 = getSample( c.p3 ).b;
				c.samp2 = getSample( c.p2 ).b;
				c.samp4 = getSample( c.p4 ).b;

			}

			dist_c_1 = distanceToDotRadius( c.samp1, c.p1, c.normal, p, angle, radius );
			dist_c_2 = distanceToDotRadius( c.samp2, c.p2, c.normal, p, angle, radius );
			dist_c_3 = distanceToDotRadius( c.samp3, c.p3, c.normal, p, angle, radius );
			dist_c_4 = distanceToDotRadius( c.samp4, c.p4, c.normal, p, angle, radius );
			res = ( dist_c_1 > 0.0 ) ? clamp( dist_c_1 / aa, 0.0, 1.0 ) : 0.0;
			res += ( dist_c_2 > 0.0 ) ? clamp( dist_c_2 / aa, 0.0, 1.0 ) : 0.0;
			res += ( dist_c_3 > 0.0 ) ? clamp( dist_c_3 / aa, 0.0, 1.0 ) : 0.0;
			res += ( dist_c_4 > 0.0 ) ? clamp( dist_c_4 / aa, 0.0, 1.0 ) : 0.0;
			res = clamp( res, 0.0, 1.0 );

			return res;

		}

		Cell getReferenceCell( vec2 p, vec2 origin, float grid_angle, float step ) {

		// get containing cell
			Cell c;

		// calc grid
			vec2 n = vec2( cos( grid_angle ), sin( grid_angle ) );
			float threshold = step * 0.5;
			float dot_normal = n.x * ( p.x - origin.x ) + n.y * ( p.y - origin.y );
			float dot_line = -n.y * ( p.x - origin.x ) + n.x * ( p.y - origin.y );
			vec2 offset = vec2( n.x * dot_normal, n.y * dot_normal );
			float offset_normal = mod( hypot( offset.x, offset.y ), step );
			float normal_dir = ( dot_normal < 0.0 ) ? 1.0 : -1.0;
			float normal_scale = ( ( offset_normal < threshold ) ? -offset_normal : step - offset_normal ) * normal_dir;
			float offset_line = mod( hypot( ( p.x - offset.x ) - origin.x, ( p.y - offset.y ) - origin.y ), step );
			float line_dir = ( dot_line < 0.0 ) ? 1.0 : -1.0;
			float line_scale = ( ( offset_line < threshold ) ? -offset_line : step - offset_line ) * line_dir;

		// get closest corner
			c.normal = n;
			c.p1.x = p.x - n.x * normal_scale + n.y * line_scale;
			c.p1.y = p.y - n.y * normal_scale - n.x * line_scale;

		// scatter
			if ( scatter != 0.0 ) {

				float off_mag = scatter * threshold * 0.5;
				float off_angle = rand( vec2( floor( c.p1.x ), floor( c.p1.y ) ) ) * PI2;
				c.p1.x += cos( off_angle ) * off_mag;
				c.p1.y += sin( off_angle ) * off_mag;

			}

		// find corners
			float normal_step = normal_dir * ( ( offset_normal < threshold ) ? step : -step );
			float line_step = line_dir * ( ( offset_line < threshold ) ? step : -step );
			c.p2.x = c.p1.x - n.x * normal_step;
			c.p2.y = c.p1.y - n.y * normal_step;
			c.p3.x = c.p1.x + n.y * line_step;
			c.p3.y = c.p1.y - n.x * line_step;
			c.p4.x = c.p1.x - n.x * normal_step + n.y * line_step;
			c.p4.y = c.p1.y - n.y * normal_step - n.x * line_step;

			return c;

		}

		float blendColour( float a, float b, float t ) {

		// blend colours
			if ( blendingMode == BLENDING_LINEAR ) {
				return blend( a, b, 1.0 - t );
			} else if ( blendingMode == BLENDING_ADD ) {
				return blend( a, min( 1.0, a + b ), t );
			} else if ( blendingMode == BLENDING_MULTIPLY ) {
				return blend( a, max( 0.0, a * b ), t );
			} else if ( blendingMode == BLENDING_LIGHTER ) {
				return blend( a, max( a, b ), t );
			} else if ( blendingMode == BLENDING_DARKER ) {
				return blend( a, min( a, b ), t );
			} else {
				return blend( a, b, 1.0 - t );
			}

		}

		void main() {

			if ( ! disable ) {

		// setup
				vec2 p = vec2( vUV.x * width, vUV.y * height );
				vec2 origin = vec2( 0, 0 );
				float aa = ( radius < 2.5 ) ? radius * 0.5 : 1.25;

		// get channel samples
				Cell cell_r = getReferenceCell( p, origin, rotateR, radius );
				Cell cell_g = getReferenceCell( p, origin, rotateG, radius );
				Cell cell_b = getReferenceCell( p, origin, rotateB, radius );
				float r = getDotColour( cell_r, p, 0, rotateR, aa );
				float g = getDotColour( cell_g, p, 1, rotateG, aa );
				float b = getDotColour( cell_b, p, 2, rotateB, aa );

		// blend with original
				vec4 colour = texture2D( tDiffuse, vUV );
				r = blendColour( r, colour.r, blending );
				g = blendColour( g, colour.g, blending );
				b = blendColour( b, colour.b, blending );

				if ( greyscale ) {
					r = g = b = (r + b + g) / 3.0;
				}

				gl_FragColor = vec4( r, g, b, 1.0 );

			} else {

				gl_FragColor = texture2D( tDiffuse, vUV );

			}

		}`

};

export { HalftoneShader };