Newer
Older
2024-Tsubasa / system / node_modules / three / examples / jsm / loaders / SVGLoader.js
import {
	Box2,
	BufferGeometry,
	FileLoader,
	Float32BufferAttribute,
	Loader,
	Matrix3,
	Path,
	Shape,
	ShapePath,
	ShapeUtils,
	SRGBColorSpace,
	Vector2,
	Vector3
} from 'three';

const COLOR_SPACE_SVG = SRGBColorSpace;

class SVGLoader extends Loader {

	constructor( manager ) {

		super( manager );

		// Default dots per inch
		this.defaultDPI = 90;

		// Accepted units: 'mm', 'cm', 'in', 'pt', 'pc', 'px'
		this.defaultUnit = 'px';

	}

	load( url, onLoad, onProgress, onError ) {

		const scope = this;

		const loader = new FileLoader( scope.manager );
		loader.setPath( scope.path );
		loader.setRequestHeader( scope.requestHeader );
		loader.setWithCredentials( scope.withCredentials );
		loader.load( url, function ( text ) {

			try {

				onLoad( scope.parse( text ) );

			} catch ( e ) {

				if ( onError ) {

					onError( e );

				} else {

					console.error( e );

				}

				scope.manager.itemError( url );

			}

		}, onProgress, onError );

	}

	parse( text ) {

		const scope = this;

		function parseNode( node, style ) {

			if ( node.nodeType !== 1 ) return;

			const transform = getNodeTransform( node );

			let isDefsNode = false;

			let path = null;

			switch ( node.nodeName ) {

				case 'svg':
					style = parseStyle( node, style );
					break;

				case 'style':
					parseCSSStylesheet( node );
					break;

				case 'g':
					style = parseStyle( node, style );
					break;

				case 'path':
					style = parseStyle( node, style );
					if ( node.hasAttribute( 'd' ) ) path = parsePathNode( node );
					break;

				case 'rect':
					style = parseStyle( node, style );
					path = parseRectNode( node );
					break;

				case 'polygon':
					style = parseStyle( node, style );
					path = parsePolygonNode( node );
					break;

				case 'polyline':
					style = parseStyle( node, style );
					path = parsePolylineNode( node );
					break;

				case 'circle':
					style = parseStyle( node, style );
					path = parseCircleNode( node );
					break;

				case 'ellipse':
					style = parseStyle( node, style );
					path = parseEllipseNode( node );
					break;

				case 'line':
					style = parseStyle( node, style );
					path = parseLineNode( node );
					break;

				case 'defs':
					isDefsNode = true;
					break;

				case 'use':
					style = parseStyle( node, style );

					const href = node.getAttributeNS( 'http://www.w3.org/1999/xlink', 'href' ) || '';
					const usedNodeId = href.substring( 1 );
					const usedNode = node.viewportElement.getElementById( usedNodeId );
					if ( usedNode ) {

						parseNode( usedNode, style );

					} else {

						console.warn( 'SVGLoader: \'use node\' references non-existent node id: ' + usedNodeId );

					}

					break;

				default:
					// console.log( node );

			}

			if ( path ) {

				if ( style.fill !== undefined && style.fill !== 'none' ) {

					path.color.setStyle( style.fill, COLOR_SPACE_SVG );

				}

				transformPath( path, currentTransform );

				paths.push( path );

				path.userData = { node: node, style: style };

			}

			const childNodes = node.childNodes;

			for ( let i = 0; i < childNodes.length; i ++ ) {

				const node = childNodes[ i ];

				if ( isDefsNode && node.nodeName !== 'style' && node.nodeName !== 'defs' ) {

					// Ignore everything in defs except CSS style definitions
					// and nested defs, because it is OK by the standard to have
					// <style/> there.
					continue;

				}

				parseNode( node, style );

			}


			if ( transform ) {

				transformStack.pop();

				if ( transformStack.length > 0 ) {

					currentTransform.copy( transformStack[ transformStack.length - 1 ] );

				} else {

					currentTransform.identity();

				}

			}

		}

		function parsePathNode( node ) {

			const path = new ShapePath();

			const point = new Vector2();
			const control = new Vector2();

			const firstPoint = new Vector2();
			let isFirstPoint = true;
			let doSetFirstPoint = false;

			const d = node.getAttribute( 'd' );

			if ( d === '' || d === 'none' ) return null;

			// console.log( d );

			const commands = d.match( /[a-df-z][^a-df-z]*/ig );

			for ( let i = 0, l = commands.length; i < l; i ++ ) {

				const command = commands[ i ];

				const type = command.charAt( 0 );
				const data = command.slice( 1 ).trim();

				if ( isFirstPoint === true ) {

					doSetFirstPoint = true;
					isFirstPoint = false;

				}

				let numbers;

				switch ( type ) {

					case 'M':
						numbers = parseFloats( data );
						for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {

							point.x = numbers[ j + 0 ];
							point.y = numbers[ j + 1 ];
							control.x = point.x;
							control.y = point.y;

							if ( j === 0 ) {

								path.moveTo( point.x, point.y );

							} else {

								path.lineTo( point.x, point.y );

							}

							if ( j === 0 ) firstPoint.copy( point );

						}

						break;

					case 'H':
						numbers = parseFloats( data );

						for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {

							point.x = numbers[ j ];
							control.x = point.x;
							control.y = point.y;
							path.lineTo( point.x, point.y );

							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );

						}

						break;

					case 'V':
						numbers = parseFloats( data );

						for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {

							point.y = numbers[ j ];
							control.x = point.x;
							control.y = point.y;
							path.lineTo( point.x, point.y );

							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );

						}

						break;

					case 'L':
						numbers = parseFloats( data );

						for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {

							point.x = numbers[ j + 0 ];
							point.y = numbers[ j + 1 ];
							control.x = point.x;
							control.y = point.y;
							path.lineTo( point.x, point.y );

							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );

						}

						break;

					case 'C':
						numbers = parseFloats( data );

						for ( let j = 0, jl = numbers.length; j < jl; j += 6 ) {

							path.bezierCurveTo(
								numbers[ j + 0 ],
								numbers[ j + 1 ],
								numbers[ j + 2 ],
								numbers[ j + 3 ],
								numbers[ j + 4 ],
								numbers[ j + 5 ]
							);
							control.x = numbers[ j + 2 ];
							control.y = numbers[ j + 3 ];
							point.x = numbers[ j + 4 ];
							point.y = numbers[ j + 5 ];

							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );

						}

						break;

					case 'S':
						numbers = parseFloats( data );

						for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {

							path.bezierCurveTo(
								getReflection( point.x, control.x ),
								getReflection( point.y, control.y ),
								numbers[ j + 0 ],
								numbers[ j + 1 ],
								numbers[ j + 2 ],
								numbers[ j + 3 ]
							);
							control.x = numbers[ j + 0 ];
							control.y = numbers[ j + 1 ];
							point.x = numbers[ j + 2 ];
							point.y = numbers[ j + 3 ];

							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );

						}

						break;

					case 'Q':
						numbers = parseFloats( data );

						for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {

							path.quadraticCurveTo(
								numbers[ j + 0 ],
								numbers[ j + 1 ],
								numbers[ j + 2 ],
								numbers[ j + 3 ]
							);
							control.x = numbers[ j + 0 ];
							control.y = numbers[ j + 1 ];
							point.x = numbers[ j + 2 ];
							point.y = numbers[ j + 3 ];

							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );

						}

						break;

					case 'T':
						numbers = parseFloats( data );

						for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {

							const rx = getReflection( point.x, control.x );
							const ry = getReflection( point.y, control.y );
							path.quadraticCurveTo(
								rx,
								ry,
								numbers[ j + 0 ],
								numbers[ j + 1 ]
							);
							control.x = rx;
							control.y = ry;
							point.x = numbers[ j + 0 ];
							point.y = numbers[ j + 1 ];

							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );

						}

						break;

					case 'A':
						numbers = parseFloats( data, [ 3, 4 ], 7 );

						for ( let j = 0, jl = numbers.length; j < jl; j += 7 ) {

							// skip command if start point == end point
							if ( numbers[ j + 5 ] == point.x && numbers[ j + 6 ] == point.y ) continue;

							const start = point.clone();
							point.x = numbers[ j + 5 ];
							point.y = numbers[ j + 6 ];
							control.x = point.x;
							control.y = point.y;
							parseArcCommand(
								path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point
							);

							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );

						}

						break;

					case 'm':
						numbers = parseFloats( data );

						for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {

							point.x += numbers[ j + 0 ];
							point.y += numbers[ j + 1 ];
							control.x = point.x;
							control.y = point.y;

							if ( j === 0 ) {

								path.moveTo( point.x, point.y );

							} else {

								path.lineTo( point.x, point.y );

							}

							if ( j === 0 ) firstPoint.copy( point );

						}

						break;

					case 'h':
						numbers = parseFloats( data );

						for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {

							point.x += numbers[ j ];
							control.x = point.x;
							control.y = point.y;
							path.lineTo( point.x, point.y );

							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );

						}

						break;

					case 'v':
						numbers = parseFloats( data );

						for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {

							point.y += numbers[ j ];
							control.x = point.x;
							control.y = point.y;
							path.lineTo( point.x, point.y );

							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );

						}

						break;

					case 'l':
						numbers = parseFloats( data );

						for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {

							point.x += numbers[ j + 0 ];
							point.y += numbers[ j + 1 ];
							control.x = point.x;
							control.y = point.y;
							path.lineTo( point.x, point.y );

							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );

						}

						break;

					case 'c':
						numbers = parseFloats( data );

						for ( let j = 0, jl = numbers.length; j < jl; j += 6 ) {

							path.bezierCurveTo(
								point.x + numbers[ j + 0 ],
								point.y + numbers[ j + 1 ],
								point.x + numbers[ j + 2 ],
								point.y + numbers[ j + 3 ],
								point.x + numbers[ j + 4 ],
								point.y + numbers[ j + 5 ]
							);
							control.x = point.x + numbers[ j + 2 ];
							control.y = point.y + numbers[ j + 3 ];
							point.x += numbers[ j + 4 ];
							point.y += numbers[ j + 5 ];

							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );

						}

						break;

					case 's':
						numbers = parseFloats( data );

						for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {

							path.bezierCurveTo(
								getReflection( point.x, control.x ),
								getReflection( point.y, control.y ),
								point.x + numbers[ j + 0 ],
								point.y + numbers[ j + 1 ],
								point.x + numbers[ j + 2 ],
								point.y + numbers[ j + 3 ]
							);
							control.x = point.x + numbers[ j + 0 ];
							control.y = point.y + numbers[ j + 1 ];
							point.x += numbers[ j + 2 ];
							point.y += numbers[ j + 3 ];

							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );

						}

						break;

					case 'q':
						numbers = parseFloats( data );

						for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {

							path.quadraticCurveTo(
								point.x + numbers[ j + 0 ],
								point.y + numbers[ j + 1 ],
								point.x + numbers[ j + 2 ],
								point.y + numbers[ j + 3 ]
							);
							control.x = point.x + numbers[ j + 0 ];
							control.y = point.y + numbers[ j + 1 ];
							point.x += numbers[ j + 2 ];
							point.y += numbers[ j + 3 ];

							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );

						}

						break;

					case 't':
						numbers = parseFloats( data );

						for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {

							const rx = getReflection( point.x, control.x );
							const ry = getReflection( point.y, control.y );
							path.quadraticCurveTo(
								rx,
								ry,
								point.x + numbers[ j + 0 ],
								point.y + numbers[ j + 1 ]
							);
							control.x = rx;
							control.y = ry;
							point.x = point.x + numbers[ j + 0 ];
							point.y = point.y + numbers[ j + 1 ];

							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );

						}

						break;

					case 'a':
						numbers = parseFloats( data, [ 3, 4 ], 7 );

						for ( let j = 0, jl = numbers.length; j < jl; j += 7 ) {

							// skip command if no displacement
							if ( numbers[ j + 5 ] == 0 && numbers[ j + 6 ] == 0 ) continue;

							const start = point.clone();
							point.x += numbers[ j + 5 ];
							point.y += numbers[ j + 6 ];
							control.x = point.x;
							control.y = point.y;
							parseArcCommand(
								path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point
							);

							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );

						}

						break;

					case 'Z':
					case 'z':
						path.currentPath.autoClose = true;

						if ( path.currentPath.curves.length > 0 ) {

							// Reset point to beginning of Path
							point.copy( firstPoint );
							path.currentPath.currentPoint.copy( point );
							isFirstPoint = true;

						}

						break;

					default:
						console.warn( command );

				}

				// console.log( type, parseFloats( data ), parseFloats( data ).length  )

				doSetFirstPoint = false;

			}

			return path;

		}

		function parseCSSStylesheet( node ) {

			if ( ! node.sheet || ! node.sheet.cssRules || ! node.sheet.cssRules.length ) return;

			for ( let i = 0; i < node.sheet.cssRules.length; i ++ ) {

				const stylesheet = node.sheet.cssRules[ i ];

				if ( stylesheet.type !== 1 ) continue;

				const selectorList = stylesheet.selectorText
					.split( /,/gm )
					.filter( Boolean )
					.map( i => i.trim() );

				for ( let j = 0; j < selectorList.length; j ++ ) {

					// Remove empty rules
					const definitions = Object.fromEntries(
						Object.entries( stylesheet.style ).filter( ( [ , v ] ) => v !== '' )
					);

					stylesheets[ selectorList[ j ] ] = Object.assign(
						stylesheets[ selectorList[ j ] ] || {},
						definitions
					);

				}

			}

		}

		/**
		 * https://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
		 * https://mortoray.com/2017/02/16/rendering-an-svg-elliptical-arc-as-bezier-curves/ Appendix: Endpoint to center arc conversion
		 * From
		 * rx ry x-axis-rotation large-arc-flag sweep-flag x y
		 * To
		 * aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation
		 */

		function parseArcCommand( path, rx, ry, x_axis_rotation, large_arc_flag, sweep_flag, start, end ) {

			if ( rx == 0 || ry == 0 ) {

				// draw a line if either of the radii == 0
				path.lineTo( end.x, end.y );
				return;

			}

			x_axis_rotation = x_axis_rotation * Math.PI / 180;

			// Ensure radii are positive
			rx = Math.abs( rx );
			ry = Math.abs( ry );

			// Compute (x1', y1')
			const dx2 = ( start.x - end.x ) / 2.0;
			const dy2 = ( start.y - end.y ) / 2.0;
			const x1p = Math.cos( x_axis_rotation ) * dx2 + Math.sin( x_axis_rotation ) * dy2;
			const y1p = - Math.sin( x_axis_rotation ) * dx2 + Math.cos( x_axis_rotation ) * dy2;

			// Compute (cx', cy')
			let rxs = rx * rx;
			let rys = ry * ry;
			const x1ps = x1p * x1p;
			const y1ps = y1p * y1p;

			// Ensure radii are large enough
			const cr = x1ps / rxs + y1ps / rys;

			if ( cr > 1 ) {

				// scale up rx,ry equally so cr == 1
				const s = Math.sqrt( cr );
				rx = s * rx;
				ry = s * ry;
				rxs = rx * rx;
				rys = ry * ry;

			}

			const dq = ( rxs * y1ps + rys * x1ps );
			const pq = ( rxs * rys - dq ) / dq;
			let q = Math.sqrt( Math.max( 0, pq ) );
			if ( large_arc_flag === sweep_flag ) q = - q;
			const cxp = q * rx * y1p / ry;
			const cyp = - q * ry * x1p / rx;

			// Step 3: Compute (cx, cy) from (cx', cy')
			const cx = Math.cos( x_axis_rotation ) * cxp - Math.sin( x_axis_rotation ) * cyp + ( start.x + end.x ) / 2;
			const cy = Math.sin( x_axis_rotation ) * cxp + Math.cos( x_axis_rotation ) * cyp + ( start.y + end.y ) / 2;

			// Step 4: Compute θ1 and Δθ
			const theta = svgAngle( 1, 0, ( x1p - cxp ) / rx, ( y1p - cyp ) / ry );
			const delta = svgAngle( ( x1p - cxp ) / rx, ( y1p - cyp ) / ry, ( - x1p - cxp ) / rx, ( - y1p - cyp ) / ry ) % ( Math.PI * 2 );

			path.currentPath.absellipse( cx, cy, rx, ry, theta, theta + delta, sweep_flag === 0, x_axis_rotation );

		}

		function svgAngle( ux, uy, vx, vy ) {

			const dot = ux * vx + uy * vy;
			const len = Math.sqrt( ux * ux + uy * uy ) * Math.sqrt( vx * vx + vy * vy );
			let ang = Math.acos( Math.max( - 1, Math.min( 1, dot / len ) ) ); // floating point precision, slightly over values appear
			if ( ( ux * vy - uy * vx ) < 0 ) ang = - ang;
			return ang;

		}

		/*
		* According to https://www.w3.org/TR/SVG/shapes.html#RectElementRXAttribute
		* rounded corner should be rendered to elliptical arc, but bezier curve does the job well enough
		*/
		function parseRectNode( node ) {

			const x = parseFloatWithUnits( node.getAttribute( 'x' ) || 0 );
			const y = parseFloatWithUnits( node.getAttribute( 'y' ) || 0 );
			const rx = parseFloatWithUnits( node.getAttribute( 'rx' ) || node.getAttribute( 'ry' ) || 0 );
			const ry = parseFloatWithUnits( node.getAttribute( 'ry' ) || node.getAttribute( 'rx' ) || 0 );
			const w = parseFloatWithUnits( node.getAttribute( 'width' ) );
			const h = parseFloatWithUnits( node.getAttribute( 'height' ) );

			// Ellipse arc to Bezier approximation Coefficient (Inversed). See:
			// https://spencermortensen.com/articles/bezier-circle/
			const bci = 1 - 0.551915024494;

			const path = new ShapePath();

			// top left
			path.moveTo( x + rx, y );

			// top right
			path.lineTo( x + w - rx, y );
			if ( rx !== 0 || ry !== 0 ) {

				path.bezierCurveTo(
					x + w - rx * bci,
					y,
					x + w,
					y + ry * bci,
					x + w,
					y + ry
				);

			}

			// bottom right
			path.lineTo( x + w, y + h - ry );
			if ( rx !== 0 || ry !== 0 ) {

				path.bezierCurveTo(
					x + w,
					y + h - ry * bci,
					x + w - rx * bci,
					y + h,
					x + w - rx,
					y + h
				);

			}

			// bottom left
			path.lineTo( x + rx, y + h );
			if ( rx !== 0 || ry !== 0 ) {

				path.bezierCurveTo(
					x + rx * bci,
					y + h,
					x,
					y + h - ry * bci,
					x,
					y + h - ry
				);

			}

			// back to top left
			path.lineTo( x, y + ry );
			if ( rx !== 0 || ry !== 0 ) {

				path.bezierCurveTo( x, y + ry * bci, x + rx * bci, y, x + rx, y );

			}

			return path;

		}

		function parsePolygonNode( node ) {

			function iterator( match, a, b ) {

				const x = parseFloatWithUnits( a );
				const y = parseFloatWithUnits( b );

				if ( index === 0 ) {

					path.moveTo( x, y );

				} else {

					path.lineTo( x, y );

				}

				index ++;

			}

			const regex = /([+-]?\d*\.?\d+(?:e[+-]?\d+)?)(?:,|\s)([+-]?\d*\.?\d+(?:e[+-]?\d+)?)/g;

			const path = new ShapePath();

			let index = 0;

			node.getAttribute( 'points' ).replace( regex, iterator );

			path.currentPath.autoClose = true;

			return path;

		}

		function parsePolylineNode( node ) {

			function iterator( match, a, b ) {

				const x = parseFloatWithUnits( a );
				const y = parseFloatWithUnits( b );

				if ( index === 0 ) {

					path.moveTo( x, y );

				} else {

					path.lineTo( x, y );

				}

				index ++;

			}

			const regex = /([+-]?\d*\.?\d+(?:e[+-]?\d+)?)(?:,|\s)([+-]?\d*\.?\d+(?:e[+-]?\d+)?)/g;

			const path = new ShapePath();

			let index = 0;

			node.getAttribute( 'points' ).replace( regex, iterator );

			path.currentPath.autoClose = false;

			return path;

		}

		function parseCircleNode( node ) {

			const x = parseFloatWithUnits( node.getAttribute( 'cx' ) || 0 );
			const y = parseFloatWithUnits( node.getAttribute( 'cy' ) || 0 );
			const r = parseFloatWithUnits( node.getAttribute( 'r' ) || 0 );

			const subpath = new Path();
			subpath.absarc( x, y, r, 0, Math.PI * 2 );

			const path = new ShapePath();
			path.subPaths.push( subpath );

			return path;

		}

		function parseEllipseNode( node ) {

			const x = parseFloatWithUnits( node.getAttribute( 'cx' ) || 0 );
			const y = parseFloatWithUnits( node.getAttribute( 'cy' ) || 0 );
			const rx = parseFloatWithUnits( node.getAttribute( 'rx' ) || 0 );
			const ry = parseFloatWithUnits( node.getAttribute( 'ry' ) || 0 );

			const subpath = new Path();
			subpath.absellipse( x, y, rx, ry, 0, Math.PI * 2 );

			const path = new ShapePath();
			path.subPaths.push( subpath );

			return path;

		}

		function parseLineNode( node ) {

			const x1 = parseFloatWithUnits( node.getAttribute( 'x1' ) || 0 );
			const y1 = parseFloatWithUnits( node.getAttribute( 'y1' ) || 0 );
			const x2 = parseFloatWithUnits( node.getAttribute( 'x2' ) || 0 );
			const y2 = parseFloatWithUnits( node.getAttribute( 'y2' ) || 0 );

			const path = new ShapePath();
			path.moveTo( x1, y1 );
			path.lineTo( x2, y2 );
			path.currentPath.autoClose = false;

			return path;

		}

		//

		function parseStyle( node, style ) {

			style = Object.assign( {}, style ); // clone style

			let stylesheetStyles = {};

			if ( node.hasAttribute( 'class' ) ) {

				const classSelectors = node.getAttribute( 'class' )
					.split( /\s/ )
					.filter( Boolean )
					.map( i => i.trim() );

				for ( let i = 0; i < classSelectors.length; i ++ ) {

					stylesheetStyles = Object.assign( stylesheetStyles, stylesheets[ '.' + classSelectors[ i ] ] );

				}

			}

			if ( node.hasAttribute( 'id' ) ) {

				stylesheetStyles = Object.assign( stylesheetStyles, stylesheets[ '#' + node.getAttribute( 'id' ) ] );

			}

			function addStyle( svgName, jsName, adjustFunction ) {

				if ( adjustFunction === undefined ) adjustFunction = function copy( v ) {

					if ( v.startsWith( 'url' ) ) console.warn( 'SVGLoader: url access in attributes is not implemented.' );

					return v;

				};

				if ( node.hasAttribute( svgName ) ) style[ jsName ] = adjustFunction( node.getAttribute( svgName ) );
				if ( stylesheetStyles[ svgName ] ) style[ jsName ] = adjustFunction( stylesheetStyles[ svgName ] );
				if ( node.style && node.style[ svgName ] !== '' ) style[ jsName ] = adjustFunction( node.style[ svgName ] );

			}

			function clamp( v ) {

				return Math.max( 0, Math.min( 1, parseFloatWithUnits( v ) ) );

			}

			function positive( v ) {

				return Math.max( 0, parseFloatWithUnits( v ) );

			}

			addStyle( 'fill', 'fill' );
			addStyle( 'fill-opacity', 'fillOpacity', clamp );
			addStyle( 'fill-rule', 'fillRule' );
			addStyle( 'opacity', 'opacity', clamp );
			addStyle( 'stroke', 'stroke' );
			addStyle( 'stroke-opacity', 'strokeOpacity', clamp );
			addStyle( 'stroke-width', 'strokeWidth', positive );
			addStyle( 'stroke-linejoin', 'strokeLineJoin' );
			addStyle( 'stroke-linecap', 'strokeLineCap' );
			addStyle( 'stroke-miterlimit', 'strokeMiterLimit', positive );
			addStyle( 'visibility', 'visibility' );

			return style;

		}

		// http://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes

		function getReflection( a, b ) {

			return a - ( b - a );

		}

		// from https://github.com/ppvg/svg-numbers (MIT License)

		function parseFloats( input, flags, stride ) {

			if ( typeof input !== 'string' ) {

				throw new TypeError( 'Invalid input: ' + typeof input );

			}

			// Character groups
			const RE = {
				SEPARATOR: /[ \t\r\n\,.\-+]/,
				WHITESPACE: /[ \t\r\n]/,
				DIGIT: /[\d]/,
				SIGN: /[-+]/,
				POINT: /\./,
				COMMA: /,/,
				EXP: /e/i,
				FLAGS: /[01]/
			};

			// States
			const SEP = 0;
			const INT = 1;
			const FLOAT = 2;
			const EXP = 3;

			let state = SEP;
			let seenComma = true;
			let number = '', exponent = '';
			const result = [];

			function throwSyntaxError( current, i, partial ) {

				const error = new SyntaxError( 'Unexpected character "' + current + '" at index ' + i + '.' );
				error.partial = partial;
				throw error;

			}

			function newNumber() {

				if ( number !== '' ) {

					if ( exponent === '' ) result.push( Number( number ) );
					else result.push( Number( number ) * Math.pow( 10, Number( exponent ) ) );

				}

				number = '';
				exponent = '';

			}

			let current;
			const length = input.length;

			for ( let i = 0; i < length; i ++ ) {

				current = input[ i ];

				// check for flags
				if ( Array.isArray( flags ) && flags.includes( result.length % stride ) && RE.FLAGS.test( current ) ) {

					state = INT;
					number = current;
					newNumber();
					continue;

				}

				// parse until next number
				if ( state === SEP ) {

					// eat whitespace
					if ( RE.WHITESPACE.test( current ) ) {

						continue;

					}

					// start new number
					if ( RE.DIGIT.test( current ) || RE.SIGN.test( current ) ) {

						state = INT;
						number = current;
						continue;

					}

					if ( RE.POINT.test( current ) ) {

						state = FLOAT;
						number = current;
						continue;

					}

					// throw on double commas (e.g. "1, , 2")
					if ( RE.COMMA.test( current ) ) {

						if ( seenComma ) {

							throwSyntaxError( current, i, result );

						}

						seenComma = true;

					}

				}

				// parse integer part
				if ( state === INT ) {

					if ( RE.DIGIT.test( current ) ) {

						number += current;
						continue;

					}

					if ( RE.POINT.test( current ) ) {

						number += current;
						state = FLOAT;
						continue;

					}

					if ( RE.EXP.test( current ) ) {

						state = EXP;
						continue;

					}

					// throw on double signs ("-+1"), but not on sign as separator ("-1-2")
					if ( RE.SIGN.test( current )
							&& number.length === 1
							&& RE.SIGN.test( number[ 0 ] ) ) {

						throwSyntaxError( current, i, result );

					}

				}

				// parse decimal part
				if ( state === FLOAT ) {

					if ( RE.DIGIT.test( current ) ) {

						number += current;
						continue;

					}

					if ( RE.EXP.test( current ) ) {

						state = EXP;
						continue;

					}

					// throw on double decimal points (e.g. "1..2")
					if ( RE.POINT.test( current ) && number[ number.length - 1 ] === '.' ) {

						throwSyntaxError( current, i, result );

					}

				}

				// parse exponent part
				if ( state === EXP ) {

					if ( RE.DIGIT.test( current ) ) {

						exponent += current;
						continue;

					}

					if ( RE.SIGN.test( current ) ) {

						if ( exponent === '' ) {

							exponent += current;
							continue;

						}

						if ( exponent.length === 1 && RE.SIGN.test( exponent ) ) {

							throwSyntaxError( current, i, result );

						}

					}

				}


				// end of number
				if ( RE.WHITESPACE.test( current ) ) {

					newNumber();
					state = SEP;
					seenComma = false;

				} else if ( RE.COMMA.test( current ) ) {

					newNumber();
					state = SEP;
					seenComma = true;

				} else if ( RE.SIGN.test( current ) ) {

					newNumber();
					state = INT;
					number = current;

				} else if ( RE.POINT.test( current ) ) {

					newNumber();
					state = FLOAT;
					number = current;

				} else {

					throwSyntaxError( current, i, result );

				}

			}

			// add the last number found (if any)
			newNumber();

			return result;

		}

		// Units

		const units = [ 'mm', 'cm', 'in', 'pt', 'pc', 'px' ];

		// Conversion: [ fromUnit ][ toUnit ] (-1 means dpi dependent)
		const unitConversion = {

			'mm': {
				'mm': 1,
				'cm': 0.1,
				'in': 1 / 25.4,
				'pt': 72 / 25.4,
				'pc': 6 / 25.4,
				'px': - 1
			},
			'cm': {
				'mm': 10,
				'cm': 1,
				'in': 1 / 2.54,
				'pt': 72 / 2.54,
				'pc': 6 / 2.54,
				'px': - 1
			},
			'in': {
				'mm': 25.4,
				'cm': 2.54,
				'in': 1,
				'pt': 72,
				'pc': 6,
				'px': - 1
			},
			'pt': {
				'mm': 25.4 / 72,
				'cm': 2.54 / 72,
				'in': 1 / 72,
				'pt': 1,
				'pc': 6 / 72,
				'px': - 1
			},
			'pc': {
				'mm': 25.4 / 6,
				'cm': 2.54 / 6,
				'in': 1 / 6,
				'pt': 72 / 6,
				'pc': 1,
				'px': - 1
			},
			'px': {
				'px': 1
			}

		};

		function parseFloatWithUnits( string ) {

			let theUnit = 'px';

			if ( typeof string === 'string' || string instanceof String ) {

				for ( let i = 0, n = units.length; i < n; i ++ ) {

					const u = units[ i ];

					if ( string.endsWith( u ) ) {

						theUnit = u;
						string = string.substring( 0, string.length - u.length );
						break;

					}

				}

			}

			let scale = undefined;

			if ( theUnit === 'px' && scope.defaultUnit !== 'px' ) {

				// Conversion scale from  pixels to inches, then to default units

				scale = unitConversion[ 'in' ][ scope.defaultUnit ] / scope.defaultDPI;

			} else {

				scale = unitConversion[ theUnit ][ scope.defaultUnit ];

				if ( scale < 0 ) {

					// Conversion scale to pixels

					scale = unitConversion[ theUnit ][ 'in' ] * scope.defaultDPI;

				}

			}

			return scale * parseFloat( string );

		}

		// Transforms

		function getNodeTransform( node ) {

			if ( ! ( node.hasAttribute( 'transform' ) || ( node.nodeName === 'use' && ( node.hasAttribute( 'x' ) || node.hasAttribute( 'y' ) ) ) ) ) {

				return null;

			}

			const transform = parseNodeTransform( node );

			if ( transformStack.length > 0 ) {

				transform.premultiply( transformStack[ transformStack.length - 1 ] );

			}

			currentTransform.copy( transform );
			transformStack.push( transform );

			return transform;

		}

		function parseNodeTransform( node ) {

			const transform = new Matrix3();
			const currentTransform = tempTransform0;

			if ( node.nodeName === 'use' && ( node.hasAttribute( 'x' ) || node.hasAttribute( 'y' ) ) ) {

				const tx = parseFloatWithUnits( node.getAttribute( 'x' ) );
				const ty = parseFloatWithUnits( node.getAttribute( 'y' ) );

				transform.translate( tx, ty );

			}

			if ( node.hasAttribute( 'transform' ) ) {

				const transformsTexts = node.getAttribute( 'transform' ).split( ')' );

				for ( let tIndex = transformsTexts.length - 1; tIndex >= 0; tIndex -- ) {

					const transformText = transformsTexts[ tIndex ].trim();

					if ( transformText === '' ) continue;

					const openParPos = transformText.indexOf( '(' );
					const closeParPos = transformText.length;

					if ( openParPos > 0 && openParPos < closeParPos ) {

						const transformType = transformText.slice( 0, openParPos );

						const array = parseFloats( transformText.slice( openParPos + 1 ) );

						currentTransform.identity();

						switch ( transformType ) {

							case 'translate':

								if ( array.length >= 1 ) {

									const tx = array[ 0 ];
									let ty = 0;

									if ( array.length >= 2 ) {

										ty = array[ 1 ];

									}

									currentTransform.translate( tx, ty );

								}

								break;

							case 'rotate':

								if ( array.length >= 1 ) {

									let angle = 0;
									let cx = 0;
									let cy = 0;

									// Angle
									angle = array[ 0 ] * Math.PI / 180;

									if ( array.length >= 3 ) {

										// Center x, y
										cx = array[ 1 ];
										cy = array[ 2 ];

									}

									// Rotate around center (cx, cy)
									tempTransform1.makeTranslation( - cx, - cy );
									tempTransform2.makeRotation( angle );
									tempTransform3.multiplyMatrices( tempTransform2, tempTransform1 );
									tempTransform1.makeTranslation( cx, cy );
									currentTransform.multiplyMatrices( tempTransform1, tempTransform3 );

								}

								break;

							case 'scale':

								if ( array.length >= 1 ) {

									const scaleX = array[ 0 ];
									let scaleY = scaleX;

									if ( array.length >= 2 ) {

										scaleY = array[ 1 ];

									}

									currentTransform.scale( scaleX, scaleY );

								}

								break;

							case 'skewX':

								if ( array.length === 1 ) {

									currentTransform.set(
										1, Math.tan( array[ 0 ] * Math.PI / 180 ), 0,
										0, 1, 0,
										0, 0, 1
									);

								}

								break;

							case 'skewY':

								if ( array.length === 1 ) {

									currentTransform.set(
										1, 0, 0,
										Math.tan( array[ 0 ] * Math.PI / 180 ), 1, 0,
										0, 0, 1
									);

								}

								break;

							case 'matrix':

								if ( array.length === 6 ) {

									currentTransform.set(
										array[ 0 ], array[ 2 ], array[ 4 ],
										array[ 1 ], array[ 3 ], array[ 5 ],
										0, 0, 1
									);

								}

								break;

						}

					}

					transform.premultiply( currentTransform );

				}

			}

			return transform;

		}

		function transformPath( path, m ) {

			function transfVec2( v2 ) {

				tempV3.set( v2.x, v2.y, 1 ).applyMatrix3( m );

				v2.set( tempV3.x, tempV3.y );

			}

			function transfEllipseGeneric( curve ) {

				// For math description see:
				// https://math.stackexchange.com/questions/4544164

				const a = curve.xRadius;
				const b = curve.yRadius;

				const cosTheta = Math.cos( curve.aRotation );
				const sinTheta = Math.sin( curve.aRotation );

				const v1 = new Vector3( a * cosTheta, a * sinTheta, 0 );
				const v2 = new Vector3( - b * sinTheta, b * cosTheta, 0 );

				const f1 = v1.applyMatrix3( m );
				const f2 = v2.applyMatrix3( m );

				const mF = tempTransform0.set(
					f1.x, f2.x, 0,
					f1.y, f2.y, 0,
					0, 0, 1,
				);

				const mFInv = tempTransform1.copy( mF ).invert();
				const mFInvT = tempTransform2.copy( mFInv ).transpose();
				const mQ = mFInvT.multiply( mFInv );
				const mQe = mQ.elements;

				const ed = eigenDecomposition( mQe[ 0 ], mQe[ 1 ], mQe[ 4 ] );
				const rt1sqrt = Math.sqrt( ed.rt1 );
				const rt2sqrt = Math.sqrt( ed.rt2 );

				curve.xRadius = 1 / rt1sqrt;
				curve.yRadius = 1 / rt2sqrt;
				curve.aRotation = Math.atan2( ed.sn, ed.cs );

				const isFullEllipse =
					( curve.aEndAngle - curve.aStartAngle ) % ( 2 * Math.PI ) < Number.EPSILON;

				// Do not touch angles of a full ellipse because after transformation they
				// would converge to a sinle value effectively removing the whole curve

				if ( ! isFullEllipse ) {

					const mDsqrt = tempTransform1.set(
						rt1sqrt, 0, 0,
						0, rt2sqrt, 0,
						0, 0, 1,
					);

					const mRT = tempTransform2.set(
						ed.cs, ed.sn, 0,
						- ed.sn, ed.cs, 0,
						0, 0, 1,
					);

					const mDRF = mDsqrt.multiply( mRT ).multiply( mF );

					const transformAngle = phi => {

						const { x: cosR, y: sinR } =
							new Vector3( Math.cos( phi ), Math.sin( phi ), 0 ).applyMatrix3( mDRF );

						return Math.atan2( sinR, cosR );

					};

					curve.aStartAngle = transformAngle( curve.aStartAngle );
					curve.aEndAngle = transformAngle( curve.aEndAngle );

					if ( isTransformFlipped( m ) ) {

						curve.aClockwise = ! curve.aClockwise;

					}

				}

			}

			function transfEllipseNoSkew( curve ) {

				// Faster shortcut if no skew is applied
				// (e.g, a euclidean transform of a group containing the ellipse)

				const sx = getTransformScaleX( m );
				const sy = getTransformScaleY( m );

				curve.xRadius *= sx;
				curve.yRadius *= sy;

				// Extract rotation angle from the matrix of form:
				//
				//  | cosθ sx   -sinθ sy |
				//  | sinθ sx    cosθ sy |
				//
				// Remembering that tanθ = sinθ / cosθ; and that
				// `sx`, `sy`, or both might be zero.
				const theta =
					sx > Number.EPSILON
						? Math.atan2( m.elements[ 1 ], m.elements[ 0 ] )
						: Math.atan2( - m.elements[ 3 ], m.elements[ 4 ] );

				curve.aRotation += theta;

				if ( isTransformFlipped( m ) ) {

					curve.aStartAngle *= - 1;
					curve.aEndAngle *= - 1;
					curve.aClockwise = ! curve.aClockwise;

				}

			}

			const subPaths = path.subPaths;

			for ( let i = 0, n = subPaths.length; i < n; i ++ ) {

				const subPath = subPaths[ i ];
				const curves = subPath.curves;

				for ( let j = 0; j < curves.length; j ++ ) {

					const curve = curves[ j ];

					if ( curve.isLineCurve ) {

						transfVec2( curve.v1 );
						transfVec2( curve.v2 );

					} else if ( curve.isCubicBezierCurve ) {

						transfVec2( curve.v0 );
						transfVec2( curve.v1 );
						transfVec2( curve.v2 );
						transfVec2( curve.v3 );

					} else if ( curve.isQuadraticBezierCurve ) {

						transfVec2( curve.v0 );
						transfVec2( curve.v1 );
						transfVec2( curve.v2 );

					} else if ( curve.isEllipseCurve ) {

						// Transform ellipse center point

						tempV2.set( curve.aX, curve.aY );
						transfVec2( tempV2 );
						curve.aX = tempV2.x;
						curve.aY = tempV2.y;

						// Transform ellipse shape parameters

						if ( isTransformSkewed( m ) ) {

							transfEllipseGeneric( curve );

						} else {

							transfEllipseNoSkew( curve );

						}

					}

				}

			}

		}

		function isTransformFlipped( m ) {

			const te = m.elements;
			return te[ 0 ] * te[ 4 ] - te[ 1 ] * te[ 3 ] < 0;

		}

		function isTransformSkewed( m ) {

			const te = m.elements;
			const basisDot = te[ 0 ] * te[ 3 ] + te[ 1 ] * te[ 4 ];

			// Shortcut for trivial rotations and transformations
			if ( basisDot === 0 ) return false;

			const sx = getTransformScaleX( m );
			const sy = getTransformScaleY( m );

			return Math.abs( basisDot / ( sx * sy ) ) > Number.EPSILON;

		}

		function getTransformScaleX( m ) {

			const te = m.elements;
			return Math.sqrt( te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] );

		}

		function getTransformScaleY( m ) {

			const te = m.elements;
			return Math.sqrt( te[ 3 ] * te[ 3 ] + te[ 4 ] * te[ 4 ] );

		}

		// Calculates the eigensystem of a real symmetric 2x2 matrix
		//    [ A  B ]
		//    [ B  C ]
		// in the form
		//    [ A  B ]  =  [ cs  -sn ] [ rt1   0  ] [  cs  sn ]
		//    [ B  C ]     [ sn   cs ] [  0   rt2 ] [ -sn  cs ]
		// where rt1 >= rt2.
		//
		// Adapted from: https://www.mpi-hd.mpg.de/personalhomes/globes/3x3/index.html
		// -> Algorithms for real symmetric matrices -> Analytical (2x2 symmetric)
		function eigenDecomposition( A, B, C ) {

			let rt1, rt2, cs, sn, t;
			const sm = A + C;
			const df = A - C;
			const rt = Math.sqrt( df * df + 4 * B * B );

			if ( sm > 0 ) {

				rt1 = 0.5 * ( sm + rt );
				t = 1 / rt1;
				rt2 = A * t * C - B * t * B;

			} else if ( sm < 0 ) {

				rt2 = 0.5 * ( sm - rt );

			} else {

				// This case needs to be treated separately to avoid div by 0

				rt1 = 0.5 * rt;
				rt2 = - 0.5 * rt;

			}

			// Calculate eigenvectors

			if ( df > 0 ) {

				cs = df + rt;

			} else {

				cs = df - rt;

			}

			if ( Math.abs( cs ) > 2 * Math.abs( B ) ) {

				t = - 2 * B / cs;
				sn = 1 / Math.sqrt( 1 + t * t );
				cs = t * sn;

			} else if ( Math.abs( B ) === 0 ) {

				cs = 1;
				sn = 0;

			} else {

				t = - 0.5 * cs / B;
				cs = 1 / Math.sqrt( 1 + t * t );
				sn = t * cs;

			}

			if ( df > 0 ) {

				t = cs;
				cs = - sn;
				sn = t;

			}

			return { rt1, rt2, cs, sn };

		}

		//

		const paths = [];
		const stylesheets = {};

		const transformStack = [];

		const tempTransform0 = new Matrix3();
		const tempTransform1 = new Matrix3();
		const tempTransform2 = new Matrix3();
		const tempTransform3 = new Matrix3();
		const tempV2 = new Vector2();
		const tempV3 = new Vector3();

		const currentTransform = new Matrix3();

		const xml = new DOMParser().parseFromString( text, 'image/svg+xml' ); // application/xml

		parseNode( xml.documentElement, {
			fill: '#000',
			fillOpacity: 1,
			strokeOpacity: 1,
			strokeWidth: 1,
			strokeLineJoin: 'miter',
			strokeLineCap: 'butt',
			strokeMiterLimit: 4
		} );

		const data = { paths: paths, xml: xml.documentElement };

		// console.log( paths );
		return data;

	}

	static createShapes( shapePath ) {

		// Param shapePath: a shapepath as returned by the parse function of this class
		// Returns Shape object

		const BIGNUMBER = 999999999;

		const IntersectionLocationType = {
			ORIGIN: 0,
			DESTINATION: 1,
			BETWEEN: 2,
			LEFT: 3,
			RIGHT: 4,
			BEHIND: 5,
			BEYOND: 6
		};

		const classifyResult = {
			loc: IntersectionLocationType.ORIGIN,
			t: 0
		};

		function findEdgeIntersection( a0, a1, b0, b1 ) {

			const x1 = a0.x;
			const x2 = a1.x;
			const x3 = b0.x;
			const x4 = b1.x;
			const y1 = a0.y;
			const y2 = a1.y;
			const y3 = b0.y;
			const y4 = b1.y;
			const nom1 = ( x4 - x3 ) * ( y1 - y3 ) - ( y4 - y3 ) * ( x1 - x3 );
			const nom2 = ( x2 - x1 ) * ( y1 - y3 ) - ( y2 - y1 ) * ( x1 - x3 );
			const denom = ( y4 - y3 ) * ( x2 - x1 ) - ( x4 - x3 ) * ( y2 - y1 );
			const t1 = nom1 / denom;
			const t2 = nom2 / denom;

			if ( ( ( denom === 0 ) && ( nom1 !== 0 ) ) || ( t1 <= 0 ) || ( t1 >= 1 ) || ( t2 < 0 ) || ( t2 > 1 ) ) {

				//1. lines are parallel or edges don't intersect

				return null;

			} else if ( ( nom1 === 0 ) && ( denom === 0 ) ) {

				//2. lines are colinear

				//check if endpoints of edge2 (b0-b1) lies on edge1 (a0-a1)
				for ( let i = 0; i < 2; i ++ ) {

					classifyPoint( i === 0 ? b0 : b1, a0, a1 );
					//find position of this endpoints relatively to edge1
					if ( classifyResult.loc == IntersectionLocationType.ORIGIN ) {

						const point = ( i === 0 ? b0 : b1 );
						return { x: point.x, y: point.y, t: classifyResult.t };

					} else if ( classifyResult.loc == IntersectionLocationType.BETWEEN ) {

						const x = + ( ( x1 + classifyResult.t * ( x2 - x1 ) ).toPrecision( 10 ) );
						const y = + ( ( y1 + classifyResult.t * ( y2 - y1 ) ).toPrecision( 10 ) );
						return { x: x, y: y, t: classifyResult.t, };

					}

				}

				return null;

			} else {

				//3. edges intersect

				for ( let i = 0; i < 2; i ++ ) {

					classifyPoint( i === 0 ? b0 : b1, a0, a1 );

					if ( classifyResult.loc == IntersectionLocationType.ORIGIN ) {

						const point = ( i === 0 ? b0 : b1 );
						return { x: point.x, y: point.y, t: classifyResult.t };

					}

				}

				const x = + ( ( x1 + t1 * ( x2 - x1 ) ).toPrecision( 10 ) );
				const y = + ( ( y1 + t1 * ( y2 - y1 ) ).toPrecision( 10 ) );
				return { x: x, y: y, t: t1 };

			}

		}

		function classifyPoint( p, edgeStart, edgeEnd ) {

			const ax = edgeEnd.x - edgeStart.x;
			const ay = edgeEnd.y - edgeStart.y;
			const bx = p.x - edgeStart.x;
			const by = p.y - edgeStart.y;
			const sa = ax * by - bx * ay;

			if ( ( p.x === edgeStart.x ) && ( p.y === edgeStart.y ) ) {

				classifyResult.loc = IntersectionLocationType.ORIGIN;
				classifyResult.t = 0;
				return;

			}

			if ( ( p.x === edgeEnd.x ) && ( p.y === edgeEnd.y ) ) {

				classifyResult.loc = IntersectionLocationType.DESTINATION;
				classifyResult.t = 1;
				return;

			}

			if ( sa < - Number.EPSILON ) {

				classifyResult.loc = IntersectionLocationType.LEFT;
				return;

			}

			if ( sa > Number.EPSILON ) {

				classifyResult.loc = IntersectionLocationType.RIGHT;
				return;


			}

			if ( ( ( ax * bx ) < 0 ) || ( ( ay * by ) < 0 ) ) {

				classifyResult.loc = IntersectionLocationType.BEHIND;
				return;

			}

			if ( ( Math.sqrt( ax * ax + ay * ay ) ) < ( Math.sqrt( bx * bx + by * by ) ) ) {

				classifyResult.loc = IntersectionLocationType.BEYOND;
				return;

			}

			let t;

			if ( ax !== 0 ) {

				t = bx / ax;

			} else {

				t = by / ay;

			}

			classifyResult.loc = IntersectionLocationType.BETWEEN;
			classifyResult.t = t;

		}

		function getIntersections( path1, path2 ) {

			const intersectionsRaw = [];
			const intersections = [];

			for ( let index = 1; index < path1.length; index ++ ) {

				const path1EdgeStart = path1[ index - 1 ];
				const path1EdgeEnd = path1[ index ];

				for ( let index2 = 1; index2 < path2.length; index2 ++ ) {

					const path2EdgeStart = path2[ index2 - 1 ];
					const path2EdgeEnd = path2[ index2 ];

					const intersection = findEdgeIntersection( path1EdgeStart, path1EdgeEnd, path2EdgeStart, path2EdgeEnd );

					if ( intersection !== null && intersectionsRaw.find( i => i.t <= intersection.t + Number.EPSILON && i.t >= intersection.t - Number.EPSILON ) === undefined ) {

						intersectionsRaw.push( intersection );
						intersections.push( new Vector2( intersection.x, intersection.y ) );

					}

				}

			}

			return intersections;

		}

		function getScanlineIntersections( scanline, boundingBox, paths ) {

			const center = new Vector2();
			boundingBox.getCenter( center );

			const allIntersections = [];

			paths.forEach( path => {

				// check if the center of the bounding box is in the bounding box of the paths.
				// this is a pruning method to limit the search of intersections in paths that can't envelop of the current path.
				// if a path envelops another path. The center of that oter path, has to be inside the bounding box of the enveloping path.
				if ( path.boundingBox.containsPoint( center ) ) {

					const intersections = getIntersections( scanline, path.points );

					intersections.forEach( p => {

						allIntersections.push( { identifier: path.identifier, isCW: path.isCW, point: p } );

					} );

				}

			} );

			allIntersections.sort( ( i1, i2 ) => {

				return i1.point.x - i2.point.x;

			} );

			return allIntersections;

		}

		function isHoleTo( simplePath, allPaths, scanlineMinX, scanlineMaxX, _fillRule ) {

			if ( _fillRule === null || _fillRule === undefined || _fillRule === '' ) {

				_fillRule = 'nonzero';

			}

			const centerBoundingBox = new Vector2();
			simplePath.boundingBox.getCenter( centerBoundingBox );

			const scanline = [ new Vector2( scanlineMinX, centerBoundingBox.y ), new Vector2( scanlineMaxX, centerBoundingBox.y ) ];

			const scanlineIntersections = getScanlineIntersections( scanline, simplePath.boundingBox, allPaths );

			scanlineIntersections.sort( ( i1, i2 ) => {

				return i1.point.x - i2.point.x;

			} );

			const baseIntersections = [];
			const otherIntersections = [];

			scanlineIntersections.forEach( i => {

				if ( i.identifier === simplePath.identifier ) {

					baseIntersections.push( i );

				} else {

					otherIntersections.push( i );

				}

			} );

			const firstXOfPath = baseIntersections[ 0 ].point.x;

			// build up the path hierarchy
			const stack = [];
			let i = 0;

			while ( i < otherIntersections.length && otherIntersections[ i ].point.x < firstXOfPath ) {

				if ( stack.length > 0 && stack[ stack.length - 1 ] === otherIntersections[ i ].identifier ) {

					stack.pop();

				} else {

					stack.push( otherIntersections[ i ].identifier );

				}

				i ++;

			}

			stack.push( simplePath.identifier );

			if ( _fillRule === 'evenodd' ) {

				const isHole = stack.length % 2 === 0 ? true : false;
				const isHoleFor = stack[ stack.length - 2 ];

				return { identifier: simplePath.identifier, isHole: isHole, for: isHoleFor };

			} else if ( _fillRule === 'nonzero' ) {

				// check if path is a hole by counting the amount of paths with alternating rotations it has to cross.
				let isHole = true;
				let isHoleFor = null;
				let lastCWValue = null;

				for ( let i = 0; i < stack.length; i ++ ) {

					const identifier = stack[ i ];
					if ( isHole ) {

						lastCWValue = allPaths[ identifier ].isCW;
						isHole = false;
						isHoleFor = identifier;

					} else if ( lastCWValue !== allPaths[ identifier ].isCW ) {

						lastCWValue = allPaths[ identifier ].isCW;
						isHole = true;

					}

				}

				return { identifier: simplePath.identifier, isHole: isHole, for: isHoleFor };

			} else {

				console.warn( 'fill-rule: "' + _fillRule + '" is currently not implemented.' );

			}

		}

		// check for self intersecting paths
		// TODO

		// check intersecting paths
		// TODO

		// prepare paths for hole detection
		let scanlineMinX = BIGNUMBER;
		let scanlineMaxX = - BIGNUMBER;

		let simplePaths = shapePath.subPaths.map( p => {

			const points = p.getPoints();
			let maxY = - BIGNUMBER;
			let minY = BIGNUMBER;
			let maxX = - BIGNUMBER;
			let minX = BIGNUMBER;

	      	//points.forEach(p => p.y *= -1);

			for ( let i = 0; i < points.length; i ++ ) {

				const p = points[ i ];

				if ( p.y > maxY ) {

					maxY = p.y;

				}

				if ( p.y < minY ) {

					minY = p.y;

				}

				if ( p.x > maxX ) {

					maxX = p.x;

				}

				if ( p.x < minX ) {

					minX = p.x;

				}

			}

			//
			if ( scanlineMaxX <= maxX ) {

				scanlineMaxX = maxX + 1;

			}

			if ( scanlineMinX >= minX ) {

				scanlineMinX = minX - 1;

			}

			return { curves: p.curves, points: points, isCW: ShapeUtils.isClockWise( points ), identifier: - 1, boundingBox: new Box2( new Vector2( minX, minY ), new Vector2( maxX, maxY ) ) };

		} );

		simplePaths = simplePaths.filter( sp => sp.points.length > 1 );

		for ( let identifier = 0; identifier < simplePaths.length; identifier ++ ) {

			simplePaths[ identifier ].identifier = identifier;

		}

		// check if path is solid or a hole
		const isAHole = simplePaths.map( p => isHoleTo( p, simplePaths, scanlineMinX, scanlineMaxX, ( shapePath.userData ? shapePath.userData.style.fillRule : undefined ) ) );


		const shapesToReturn = [];
		simplePaths.forEach( p => {

			const amIAHole = isAHole[ p.identifier ];

			if ( ! amIAHole.isHole ) {

				const shape = new Shape();
				shape.curves = p.curves;
				const holes = isAHole.filter( h => h.isHole && h.for === p.identifier );
				holes.forEach( h => {

					const hole = simplePaths[ h.identifier ];
					const path = new Path();
					path.curves = hole.curves;
					shape.holes.push( path );

				} );
				shapesToReturn.push( shape );

			}

		} );

		return shapesToReturn;

	}

	static getStrokeStyle( width, color, lineJoin, lineCap, miterLimit ) {

		// Param width: Stroke width
		// Param color: As returned by THREE.Color.getStyle()
		// Param lineJoin: One of "round", "bevel", "miter" or "miter-limit"
		// Param lineCap: One of "round", "square" or "butt"
		// Param miterLimit: Maximum join length, in multiples of the "width" parameter (join is truncated if it exceeds that distance)
		// Returns style object

		width = width !== undefined ? width : 1;
		color = color !== undefined ? color : '#000';
		lineJoin = lineJoin !== undefined ? lineJoin : 'miter';
		lineCap = lineCap !== undefined ? lineCap : 'butt';
		miterLimit = miterLimit !== undefined ? miterLimit : 4;

		return {
			strokeColor: color,
			strokeWidth: width,
			strokeLineJoin: lineJoin,
			strokeLineCap: lineCap,
			strokeMiterLimit: miterLimit
		};

	}

	static pointsToStroke( points, style, arcDivisions, minDistance ) {

		// Generates a stroke with some width around the given path.
		// The path can be open or closed (last point equals to first point)
		// Param points: Array of Vector2D (the path). Minimum 2 points.
		// Param style: Object with SVG properties as returned by SVGLoader.getStrokeStyle(), or SVGLoader.parse() in the path.userData.style object
		// Params arcDivisions: Arc divisions for round joins and endcaps. (Optional)
		// Param minDistance: Points closer to this distance will be merged. (Optional)
		// Returns BufferGeometry with stroke triangles (In plane z = 0). UV coordinates are generated ('u' along path. 'v' across it, from left to right)

		const vertices = [];
		const normals = [];
		const uvs = [];

		if ( SVGLoader.pointsToStrokeWithBuffers( points, style, arcDivisions, minDistance, vertices, normals, uvs ) === 0 ) {

			return null;

		}

		const geometry = new BufferGeometry();
		geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
		geometry.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
		geometry.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

		return geometry;

	}

	static pointsToStrokeWithBuffers( points, style, arcDivisions, minDistance, vertices, normals, uvs, vertexOffset ) {

		// This function can be called to update existing arrays or buffers.
		// Accepts same parameters as pointsToStroke, plus the buffers and optional offset.
		// Param vertexOffset: Offset vertices to start writing in the buffers (3 elements/vertex for vertices and normals, and 2 elements/vertex for uvs)
		// Returns number of written vertices / normals / uvs pairs
		// if 'vertices' parameter is undefined no triangles will be generated, but the returned vertices count will still be valid (useful to preallocate the buffers)
		// 'normals' and 'uvs' buffers are optional

		const tempV2_1 = new Vector2();
		const tempV2_2 = new Vector2();
		const tempV2_3 = new Vector2();
		const tempV2_4 = new Vector2();
		const tempV2_5 = new Vector2();
		const tempV2_6 = new Vector2();
		const tempV2_7 = new Vector2();
		const lastPointL = new Vector2();
		const lastPointR = new Vector2();
		const point0L = new Vector2();
		const point0R = new Vector2();
		const currentPointL = new Vector2();
		const currentPointR = new Vector2();
		const nextPointL = new Vector2();
		const nextPointR = new Vector2();
		const innerPoint = new Vector2();
		const outerPoint = new Vector2();

		arcDivisions = arcDivisions !== undefined ? arcDivisions : 12;
		minDistance = minDistance !== undefined ? minDistance : 0.001;
		vertexOffset = vertexOffset !== undefined ? vertexOffset : 0;

		// First ensure there are no duplicated points
		points = removeDuplicatedPoints( points );

		const numPoints = points.length;

		if ( numPoints < 2 ) return 0;

		const isClosed = points[ 0 ].equals( points[ numPoints - 1 ] );

		let currentPoint;
		let previousPoint = points[ 0 ];
		let nextPoint;

		const strokeWidth2 = style.strokeWidth / 2;

		const deltaU = 1 / ( numPoints - 1 );
		let u0 = 0, u1;

		let innerSideModified;
		let joinIsOnLeftSide;
		let isMiter;
		let initialJoinIsOnLeftSide = false;

		let numVertices = 0;
		let currentCoordinate = vertexOffset * 3;
		let currentCoordinateUV = vertexOffset * 2;

		// Get initial left and right stroke points
		getNormal( points[ 0 ], points[ 1 ], tempV2_1 ).multiplyScalar( strokeWidth2 );
		lastPointL.copy( points[ 0 ] ).sub( tempV2_1 );
		lastPointR.copy( points[ 0 ] ).add( tempV2_1 );
		point0L.copy( lastPointL );
		point0R.copy( lastPointR );

		for ( let iPoint = 1; iPoint < numPoints; iPoint ++ ) {

			currentPoint = points[ iPoint ];

			// Get next point
			if ( iPoint === numPoints - 1 ) {

				if ( isClosed ) {

					// Skip duplicated initial point
					nextPoint = points[ 1 ];

				} else nextPoint = undefined;

			} else {

				nextPoint = points[ iPoint + 1 ];

			}

			// Normal of previous segment in tempV2_1
			const normal1 = tempV2_1;
			getNormal( previousPoint, currentPoint, normal1 );

			tempV2_3.copy( normal1 ).multiplyScalar( strokeWidth2 );
			currentPointL.copy( currentPoint ).sub( tempV2_3 );
			currentPointR.copy( currentPoint ).add( tempV2_3 );

			u1 = u0 + deltaU;

			innerSideModified = false;

			if ( nextPoint !== undefined ) {

				// Normal of next segment in tempV2_2
				getNormal( currentPoint, nextPoint, tempV2_2 );

				tempV2_3.copy( tempV2_2 ).multiplyScalar( strokeWidth2 );
				nextPointL.copy( currentPoint ).sub( tempV2_3 );
				nextPointR.copy( currentPoint ).add( tempV2_3 );

				joinIsOnLeftSide = true;
				tempV2_3.subVectors( nextPoint, previousPoint );
				if ( normal1.dot( tempV2_3 ) < 0 ) {

					joinIsOnLeftSide = false;

				}

				if ( iPoint === 1 ) initialJoinIsOnLeftSide = joinIsOnLeftSide;

				tempV2_3.subVectors( nextPoint, currentPoint );
				tempV2_3.normalize();
				const dot = Math.abs( normal1.dot( tempV2_3 ) );

				// If path is straight, don't create join
				if ( dot > Number.EPSILON ) {

					// Compute inner and outer segment intersections
					const miterSide = strokeWidth2 / dot;
					tempV2_3.multiplyScalar( - miterSide );
					tempV2_4.subVectors( currentPoint, previousPoint );
					tempV2_5.copy( tempV2_4 ).setLength( miterSide ).add( tempV2_3 );
					innerPoint.copy( tempV2_5 ).negate();
					const miterLength2 = tempV2_5.length();
					const segmentLengthPrev = tempV2_4.length();
					tempV2_4.divideScalar( segmentLengthPrev );
					tempV2_6.subVectors( nextPoint, currentPoint );
					const segmentLengthNext = tempV2_6.length();
					tempV2_6.divideScalar( segmentLengthNext );
					// Check that previous and next segments doesn't overlap with the innerPoint of intersection
					if ( tempV2_4.dot( innerPoint ) < segmentLengthPrev && tempV2_6.dot( innerPoint ) < segmentLengthNext ) {

						innerSideModified = true;

					}

					outerPoint.copy( tempV2_5 ).add( currentPoint );
					innerPoint.add( currentPoint );

					isMiter = false;

					if ( innerSideModified ) {

						if ( joinIsOnLeftSide ) {

							nextPointR.copy( innerPoint );
							currentPointR.copy( innerPoint );

						} else {

							nextPointL.copy( innerPoint );
							currentPointL.copy( innerPoint );

						}

					} else {

						// The segment triangles are generated here if there was overlapping

						makeSegmentTriangles();

					}

					switch ( style.strokeLineJoin ) {

						case 'bevel':

							makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u1 );

							break;

						case 'round':

							// Segment triangles

							createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified );

							// Join triangles

							if ( joinIsOnLeftSide ) {

								makeCircularSector( currentPoint, currentPointL, nextPointL, u1, 0 );

							} else {

								makeCircularSector( currentPoint, nextPointR, currentPointR, u1, 1 );

							}

							break;

						case 'miter':
						case 'miter-clip':
						default:

							const miterFraction = ( strokeWidth2 * style.strokeMiterLimit ) / miterLength2;

							if ( miterFraction < 1 ) {

								// The join miter length exceeds the miter limit

								if ( style.strokeLineJoin !== 'miter-clip' ) {

									makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u1 );
									break;

								} else {

									// Segment triangles

									createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified );

									// Miter-clip join triangles

									if ( joinIsOnLeftSide ) {

										tempV2_6.subVectors( outerPoint, currentPointL ).multiplyScalar( miterFraction ).add( currentPointL );
										tempV2_7.subVectors( outerPoint, nextPointL ).multiplyScalar( miterFraction ).add( nextPointL );

										addVertex( currentPointL, u1, 0 );
										addVertex( tempV2_6, u1, 0 );
										addVertex( currentPoint, u1, 0.5 );

										addVertex( currentPoint, u1, 0.5 );
										addVertex( tempV2_6, u1, 0 );
										addVertex( tempV2_7, u1, 0 );

										addVertex( currentPoint, u1, 0.5 );
										addVertex( tempV2_7, u1, 0 );
										addVertex( nextPointL, u1, 0 );

									} else {

										tempV2_6.subVectors( outerPoint, currentPointR ).multiplyScalar( miterFraction ).add( currentPointR );
										tempV2_7.subVectors( outerPoint, nextPointR ).multiplyScalar( miterFraction ).add( nextPointR );

										addVertex( currentPointR, u1, 1 );
										addVertex( tempV2_6, u1, 1 );
										addVertex( currentPoint, u1, 0.5 );

										addVertex( currentPoint, u1, 0.5 );
										addVertex( tempV2_6, u1, 1 );
										addVertex( tempV2_7, u1, 1 );

										addVertex( currentPoint, u1, 0.5 );
										addVertex( tempV2_7, u1, 1 );
										addVertex( nextPointR, u1, 1 );

									}

								}

							} else {

								// Miter join segment triangles

								if ( innerSideModified ) {

									// Optimized segment + join triangles

									if ( joinIsOnLeftSide ) {

										addVertex( lastPointR, u0, 1 );
										addVertex( lastPointL, u0, 0 );
										addVertex( outerPoint, u1, 0 );

										addVertex( lastPointR, u0, 1 );
										addVertex( outerPoint, u1, 0 );
										addVertex( innerPoint, u1, 1 );

									} else {

										addVertex( lastPointR, u0, 1 );
										addVertex( lastPointL, u0, 0 );
										addVertex( outerPoint, u1, 1 );

										addVertex( lastPointL, u0, 0 );
										addVertex( innerPoint, u1, 0 );
										addVertex( outerPoint, u1, 1 );

									}


									if ( joinIsOnLeftSide ) {

										nextPointL.copy( outerPoint );

									} else {

										nextPointR.copy( outerPoint );

									}


								} else {

									// Add extra miter join triangles

									if ( joinIsOnLeftSide ) {

										addVertex( currentPointL, u1, 0 );
										addVertex( outerPoint, u1, 0 );
										addVertex( currentPoint, u1, 0.5 );

										addVertex( currentPoint, u1, 0.5 );
										addVertex( outerPoint, u1, 0 );
										addVertex( nextPointL, u1, 0 );

									} else {

										addVertex( currentPointR, u1, 1 );
										addVertex( outerPoint, u1, 1 );
										addVertex( currentPoint, u1, 0.5 );

										addVertex( currentPoint, u1, 0.5 );
										addVertex( outerPoint, u1, 1 );
										addVertex( nextPointR, u1, 1 );

									}

								}

								isMiter = true;

							}

							break;

					}

				} else {

					// The segment triangles are generated here when two consecutive points are collinear

					makeSegmentTriangles();

				}

			} else {

				// The segment triangles are generated here if it is the ending segment

				makeSegmentTriangles();

			}

			if ( ! isClosed && iPoint === numPoints - 1 ) {

				// Start line endcap
				addCapGeometry( points[ 0 ], point0L, point0R, joinIsOnLeftSide, true, u0 );

			}

			// Increment loop variables

			u0 = u1;

			previousPoint = currentPoint;

			lastPointL.copy( nextPointL );
			lastPointR.copy( nextPointR );

		}

		if ( ! isClosed ) {

			// Ending line endcap
			addCapGeometry( currentPoint, currentPointL, currentPointR, joinIsOnLeftSide, false, u1 );

		} else if ( innerSideModified && vertices ) {

			// Modify path first segment vertices to adjust to the segments inner and outer intersections

			let lastOuter = outerPoint;
			let lastInner = innerPoint;

			if ( initialJoinIsOnLeftSide !== joinIsOnLeftSide ) {

				lastOuter = innerPoint;
				lastInner = outerPoint;

			}

			if ( joinIsOnLeftSide ) {

				if ( isMiter || initialJoinIsOnLeftSide ) {

					lastInner.toArray( vertices, 0 * 3 );
					lastInner.toArray( vertices, 3 * 3 );

					if ( isMiter ) {

						lastOuter.toArray( vertices, 1 * 3 );

					}

				}

			} else {

				if ( isMiter || ! initialJoinIsOnLeftSide ) {

					lastInner.toArray( vertices, 1 * 3 );
					lastInner.toArray( vertices, 3 * 3 );

					if ( isMiter ) {

						lastOuter.toArray( vertices, 0 * 3 );

					}

				}

			}

		}

		return numVertices;

		// -- End of algorithm

		// -- Functions

		function getNormal( p1, p2, result ) {

			result.subVectors( p2, p1 );
			return result.set( - result.y, result.x ).normalize();

		}

		function addVertex( position, u, v ) {

			if ( vertices ) {

				vertices[ currentCoordinate ] = position.x;
				vertices[ currentCoordinate + 1 ] = position.y;
				vertices[ currentCoordinate + 2 ] = 0;

				if ( normals ) {

					normals[ currentCoordinate ] = 0;
					normals[ currentCoordinate + 1 ] = 0;
					normals[ currentCoordinate + 2 ] = 1;

				}

				currentCoordinate += 3;

				if ( uvs ) {

					uvs[ currentCoordinateUV ] = u;
					uvs[ currentCoordinateUV + 1 ] = v;

					currentCoordinateUV += 2;

				}

			}

			numVertices += 3;

		}

		function makeCircularSector( center, p1, p2, u, v ) {

			// param p1, p2: Points in the circle arc.
			// p1 and p2 are in clockwise direction.

			tempV2_1.copy( p1 ).sub( center ).normalize();
			tempV2_2.copy( p2 ).sub( center ).normalize();

			let angle = Math.PI;
			const dot = tempV2_1.dot( tempV2_2 );
			if ( Math.abs( dot ) < 1 ) angle = Math.abs( Math.acos( dot ) );

			angle /= arcDivisions;

			tempV2_3.copy( p1 );

			for ( let i = 0, il = arcDivisions - 1; i < il; i ++ ) {

				tempV2_4.copy( tempV2_3 ).rotateAround( center, angle );

				addVertex( tempV2_3, u, v );
				addVertex( tempV2_4, u, v );
				addVertex( center, u, 0.5 );

				tempV2_3.copy( tempV2_4 );

			}

			addVertex( tempV2_4, u, v );
			addVertex( p2, u, v );
			addVertex( center, u, 0.5 );

		}

		function makeSegmentTriangles() {

			addVertex( lastPointR, u0, 1 );
			addVertex( lastPointL, u0, 0 );
			addVertex( currentPointL, u1, 0 );

			addVertex( lastPointR, u0, 1 );
			addVertex( currentPointL, u1, 0 );
			addVertex( currentPointR, u1, 1 );

		}

		function makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u ) {

			if ( innerSideModified ) {

				// Optimized segment + bevel triangles

				if ( joinIsOnLeftSide ) {

					// Path segments triangles

					addVertex( lastPointR, u0, 1 );
					addVertex( lastPointL, u0, 0 );
					addVertex( currentPointL, u1, 0 );

					addVertex( lastPointR, u0, 1 );
					addVertex( currentPointL, u1, 0 );
					addVertex( innerPoint, u1, 1 );

					// Bevel join triangle

					addVertex( currentPointL, u, 0 );
					addVertex( nextPointL, u, 0 );
					addVertex( innerPoint, u, 0.5 );

				} else {

					// Path segments triangles

					addVertex( lastPointR, u0, 1 );
					addVertex( lastPointL, u0, 0 );
					addVertex( currentPointR, u1, 1 );

					addVertex( lastPointL, u0, 0 );
					addVertex( innerPoint, u1, 0 );
					addVertex( currentPointR, u1, 1 );

					// Bevel join triangle

					addVertex( currentPointR, u, 1 );
					addVertex( innerPoint, u, 0 );
					addVertex( nextPointR, u, 1 );

				}

			} else {

				// Bevel join triangle. The segment triangles are done in the main loop

				if ( joinIsOnLeftSide ) {

					addVertex( currentPointL, u, 0 );
					addVertex( nextPointL, u, 0 );
					addVertex( currentPoint, u, 0.5 );

				} else {

					addVertex( currentPointR, u, 1 );
					addVertex( nextPointR, u, 0 );
					addVertex( currentPoint, u, 0.5 );

				}

			}

		}

		function createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified ) {

			if ( innerSideModified ) {

				if ( joinIsOnLeftSide ) {

					addVertex( lastPointR, u0, 1 );
					addVertex( lastPointL, u0, 0 );
					addVertex( currentPointL, u1, 0 );

					addVertex( lastPointR, u0, 1 );
					addVertex( currentPointL, u1, 0 );
					addVertex( innerPoint, u1, 1 );

					addVertex( currentPointL, u0, 0 );
					addVertex( currentPoint, u1, 0.5 );
					addVertex( innerPoint, u1, 1 );

					addVertex( currentPoint, u1, 0.5 );
					addVertex( nextPointL, u0, 0 );
					addVertex( innerPoint, u1, 1 );

				} else {

					addVertex( lastPointR, u0, 1 );
					addVertex( lastPointL, u0, 0 );
					addVertex( currentPointR, u1, 1 );

					addVertex( lastPointL, u0, 0 );
					addVertex( innerPoint, u1, 0 );
					addVertex( currentPointR, u1, 1 );

					addVertex( currentPointR, u0, 1 );
					addVertex( innerPoint, u1, 0 );
					addVertex( currentPoint, u1, 0.5 );

					addVertex( currentPoint, u1, 0.5 );
					addVertex( innerPoint, u1, 0 );
					addVertex( nextPointR, u0, 1 );

				}

			}

		}

		function addCapGeometry( center, p1, p2, joinIsOnLeftSide, start, u ) {

			// param center: End point of the path
			// param p1, p2: Left and right cap points

			switch ( style.strokeLineCap ) {

				case 'round':

					if ( start ) {

						makeCircularSector( center, p2, p1, u, 0.5 );

					} else {

						makeCircularSector( center, p1, p2, u, 0.5 );

					}

					break;

				case 'square':

					if ( start ) {

						tempV2_1.subVectors( p1, center );
						tempV2_2.set( tempV2_1.y, - tempV2_1.x );

						tempV2_3.addVectors( tempV2_1, tempV2_2 ).add( center );
						tempV2_4.subVectors( tempV2_2, tempV2_1 ).add( center );

						// Modify already existing vertices
						if ( joinIsOnLeftSide ) {

							tempV2_3.toArray( vertices, 1 * 3 );
							tempV2_4.toArray( vertices, 0 * 3 );
							tempV2_4.toArray( vertices, 3 * 3 );

						} else {

							tempV2_3.toArray( vertices, 1 * 3 );
							// using tempV2_4 to update 3rd vertex if the uv.y of 3rd vertex is 1
							uvs[ 3 * 2 + 1 ] === 1 ? tempV2_4.toArray( vertices, 3 * 3 ) : tempV2_3.toArray( vertices, 3 * 3 );
							tempV2_4.toArray( vertices, 0 * 3 );

						}

					} else {

						tempV2_1.subVectors( p2, center );
						tempV2_2.set( tempV2_1.y, - tempV2_1.x );

						tempV2_3.addVectors( tempV2_1, tempV2_2 ).add( center );
						tempV2_4.subVectors( tempV2_2, tempV2_1 ).add( center );

						const vl = vertices.length;

						// Modify already existing vertices
						if ( joinIsOnLeftSide ) {

							tempV2_3.toArray( vertices, vl - 1 * 3 );
							tempV2_4.toArray( vertices, vl - 2 * 3 );
							tempV2_4.toArray( vertices, vl - 4 * 3 );

						} else {

							tempV2_4.toArray( vertices, vl - 2 * 3 );
							tempV2_3.toArray( vertices, vl - 1 * 3 );
							tempV2_4.toArray( vertices, vl - 4 * 3 );

						}

					}

					break;

				case 'butt':
				default:

					// Nothing to do here
					break;

			}

		}

		function removeDuplicatedPoints( points ) {

			// Creates a new array if necessary with duplicated points removed.
			// This does not remove duplicated initial and ending points of a closed path.

			let dupPoints = false;
			for ( let i = 1, n = points.length - 1; i < n; i ++ ) {

				if ( points[ i ].distanceTo( points[ i + 1 ] ) < minDistance ) {

					dupPoints = true;
					break;

				}

			}

			if ( ! dupPoints ) return points;

			const newPoints = [];
			newPoints.push( points[ 0 ] );

			for ( let i = 1, n = points.length - 1; i < n; i ++ ) {

				if ( points[ i ].distanceTo( points[ i + 1 ] ) >= minDistance ) {

					newPoints.push( points[ i ] );

				}

			}

			newPoints.push( points[ points.length - 1 ] );

			return newPoints;

		}

	}


}

export { SVGLoader };